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Abstract

In this thesis we propose a method to estimate search parameters for modern combinatorial
motif finders, with an emphasis on the identification of complex motifs. Currently available
combinatorial algorithms have proved to be highly efficient in exhaustively enumerating mo-
tifs which fulfill certain extraction criteria. Addressing the problem of identifying complex
motifs is extremely important, not only because these motifs can accurately model biological
phenomena but because its extraction is highly dependent upon the appropriate selection of
numerous search parameters.

Our method relies on a matrix of co-occurrences that, for each pair of small sequences of
length A, stores the number of input sequences in which the most common configuration of
these small sequences occurs in. Using biclustering techniques it is possible to group elements
of the matrix to form larger, possibly complex, motifs.

The proposed approach is not guaranteed to find all interesting correlations in the input
sequences. However, it allows the efficient identification of unusual features referring to motifs
that would otherwise require an exhaustive search in the parameter space to be extracted.
This is particularly important when searching for complex motifs.

The experimental results show that this approach can effectively identify a set of important

motif features that can guide the specification of search parameters for modern motif finders.

Keywords: Promoter prediction, Combinatorial algorithms, Motif extraction, Complex mo-

tifs, Biclustering techniques, Matrix of co-occurrences
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Resumo

Nesta tese é proposto um método para estimar os parametros de pesquisa para os modernos
algoritmos combinatérios de extrac¢ao de motivos, com énfase na identificacdo de motivos
complexos. Os algoritmos combinatérios disponiveis actualmente demonstraram ser muito
eficientes na tarefa de identificar motivos que cumpram determinados critérios de extracc¢ao.
A abordagem do problema de identificar motivos complexos é de extrema importancia, nao s
porque estes motivos sao capazes de modelar com exactidao os fenémenos biol6gicos, mas tam-
bém pelo facto da sua extraccao estar muito dependente da seleccao adequada de numerosos
parametros de pesquisa.

O método proposto utiliza uma matriz de co-ocorréncias que, para cada par de pequenas
sequéncias de tamanho A, guarda o nimero de sequéncias de entrada em que a configuracao
mais comum destas pequenas sequéncias ocorre. Utilizando técnicas de biclustering é pos-
sivel agrupar elementos desta matriz por forma a identificar motivos maiores, possivelmente
complexos.

A abordagem proposta nao garante a identificacdo de todas as correlages interessantes
nas sequéncias de entrada. No entanto, possibilita a identificacao eficiente de padrdes pouco
comuns que indicam a presenca de motivos que de outro modo necessitariam de uma procura
exaustiva no espago de parametros para poderem ser extraidos. Isto é particularmente impor-
tante no contexto da procura de motivos complexos.

Os resultados experimentais mostram que esta abordagem permite identificar eficiente-
mente um conjunto de caracteristicas importantes de motivos que pode ser usado para guiar

a especificacao de parametros de pesquisa para algoritmos modernos de extraccao de motivos.

Palavras chave: Predicao de promotores, Algoritmos combinatorios, Extrac¢ao de motivos,

Motivos complexos, Técnicas de biclustering, Matriz de co-ocorréncias
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Resumo Alargado

O genoma de um organismo pode ser visto como uma sequéncia de DNA definida sobre um
alfabeto de quatro nucledtidos X = {A, T, G,C}. Algumas regioes desta sequéncia correspon-
dem a genes e sdo, por isso, referidas como regioes codificantes. Cada gene codifica, em regra,
uma proteina. As proteinas sdo polimeros de aminoacidos e estao envolvidas em praticamente
todas as actividades celulares podendo ter uma funcao estrutural, constituindo, por exemplo,
a parede celular, ou uma funcao catalitica, assumindo o papel de enzimas no metabolismo da
célula.

O dogma central da biologia estabelece um percurso para o fluxo de informacgao genética:
DNA — RNA — proteina. De acordo com este principio, o RNA é sintetizado a partir
de um molde de DNA através de um processo designado de transcricdo e as proteinas sao
sintetizadas a partir do RNA num processo designado de traducdo. As moléculas de RNA
sdo, assim, intermedidrias na expressao da informacao genética.

Os genes de um organismo nao sao todos expressos simultaneamente. A sua activagao de-
pende das necessidades metabélicas da célula e esta sujeita a varios mecanismos de regulagao.
Um dos mais importantes mecanismos de regulacao da expressao dos genes é a regulacao ao
nivel da transcricao. Este mecanismo de regulacao é mediado por proteinas designadas de
factores de transcricao que reconhecem especificamente certas sequéncias de nucleotidos local-
izadas, geralmente, a montante dos genes na sequéncia de DNA em regides denominadas de
regioes promotoras. De entre sequéncias de nucledtidos reconhecidas pelos factores de tran-
scricao podemos distinguir sequéncias contiguas designadas de motivos simples e sequéncias
interrompidas por espacamentos de nucledtidos pouco importantes para a ligacao dos factores
de transcricdo designadas de motivos complexos. A identificacdo destes locais de ligacao é
uma tarefa fundamental na compreensao dos mecanismos de regulagao da expressao génica.

Até muito recentemente, todos os algoritmos para identificar locais de ligacao dos factores
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de transcri¢ao extraiam apenas motivos simples, traduzindo-se na pesquisa de sequéncias con-
tiguas de nucleotidos (componentes) comuns a varias regides promotoras, a menos de algumas

substitui¢coes de nucledtidos.

Actualmente, a importancia da identificacdo de motivos complexos é crescentemente re-
conhecida. Existem véarias vantagens em privilegiar a pesquisa de motivos complexos. Por um
lado, alguns factores de transcricao tém uma estrutura intrinsecamente complexa no sentido
em que reconhecem sequéncias nao-contiguas de nucledtidos e, nestes casos, os motivos com-
plexos adaptam-se melhor & modelagao dos locais de ligagao. A ligacao cooperativa de varios
factores de transcri¢ao a regiao promotora também parece envolver o reconhecimento de varias
sequéncias contiguas de nucledtidos separadas por espagamentos mais ou menos constantes.
Por outro lado, a imposicao de espagamentos entre sequéncias facilita a tarefa de distinguir
entre motivos biologicamente significativos para o processo de transcricao de motivos que
estao presentes nas varias regidoes promotoras mas que nao sao importantes neste contexto.
Adicionalmente, os motivos complexos podem ser usados para modelar sequéncias contiguas

de nucledtidos com regides centrais pouco conservadas nas varias regidoes promotoras.

Varios algoritmos actuais de pesquisa de motivos ja suportam a extrac¢do de motivos com-
plexos muito embora com varias limitagoes. A maior parte considera motivos complexos con-
stituidos por duas sequéncias contiguas de nucleétidos com um espagamento fixo entre si o que
limita severamente o tipo de motivos complexos passiveis de serem identificados. Propostas
mais recentes eliminaram a necessidade de considerar espacamentos fixos mas continuam a
permitir apenas a extraccdo de motivos complexos com dois componentes. Adicionalmente,
estes algoritmos tendem a ser pouco eficientes porque ou enumeram todos os motivos com-
plexos possiveis [1| ou porque envolvem um pré-processamento das sequéncias de entrada [2 4].
Consequentemente, estes métodos estdo limitados a considerar motivos relativamente curtos

e uma pequena gama de valores possiveis para as distancias entre cada componente.

Actualmente, tanto quanto é possivel apurar, existe apenas um grupo de algoritmos que
consegue eficientemente identificar motivos complexos com um nimero arbitrario de com-
ponentes separados por um espacamento de tamanho variavel [5,6]. Adicionalmente, estes
algoritmos incorporam a possibilidade de considerar substituicoes de nucleétidos nos vérios

componentes do motivo complexo.

Estes algoritmos tém, no entanto, uma desvantagem que diz respeito ao niimero de paramet-
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ros que é necessario especificar. Para efectuar uma pesquisa de motivos complexos é necessario
indicar o nimero de componentes que se pretende extrair, o tamanho minimo e méximo de
cada componente, bem como o espacamento minimo e maximo entre cada componente. E
necessario ainda indicar a percentagem de regidoes promotoras em que se exige que o motivo
ocorra para que seja reportado.

Este tese tem como principal objectivo o desenvolvimento de um método capaz de estimar
os parametros de pesquisa para os algoritmos combinatoérios deste tipo. O método proposto
procura identificar correlacoes nas sequéncias de entrada que possam denunciar a presenca de
um motivo complexo comum a varias regioes promotoras.

O método que é apresentado faz uso de uma matriz de co-ocorréncias. Cada elemento desta
matriz indica o nimero de sequéncias de entrada em que a configuracao mais comum entre
dois pares de sequéncias de tamanho A ocorre. Usando técnicas de biclustering, sao agrupados
elementos desta matriz de forma a construir motivos, eventualmente motivos complexos.

Os resultados experimentais mostram que esta abordagem permite identificar eficiente-
mente um conjunto de caracteristicas importantes de motivos que pode ser usado para guiar

a especificacao de parametros de pesquisa para algoritmos modernos de extracgdo de motivos.
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Glossary

Aminoacid

Chromatin

Cytosol

DNA

Enzyme

Eukaryotes

Nucleus

Prokaryotes

Promoter

Molecule that contains an amino and a carboxylic acid

functional group.

Complex of DNA and proteins found in eukaryotic cells.
Consists of the internal fluid of the cell where most of its

metabolism occurs.

Deoxyribonucleic acid molecule composed of two strands
of nucleotides forming a double helix. It is the carrier of

genetic information necessary to all cellular activities.

Biopolymer that catalyzes chemical reactions. Most en-
zymes are proteins although some are made of RNA or

DNA.

Organisms in possession of a nuclear envelope.

Organelle found in all eukaryotic cells which contains

most of their genetic material.

Organisms which lack a nuclear envelope.

see Promoter Sequence

xx1



xxii Glossary

Promoter sequence A sequence of nucleotides recognized by RNA poly-
merase required for the initiation of gene transcription.
Some authors distinguish the core promoter which is in
fact the one recognized by RNA polymerase and the
proximal and distal promoters which are recognized by
specific transcription factors. The nucleotide sequences
of all these promoters are a subset of all the motifs which
can be present in the regulatory region. The remaining
being enhancers or silencers which are generally not con-
sidered to be promoter sequences since their influence is
independent of position and orientation.

Protein Organic compound consisting of aminoacids joined by
peptide bonds. It is essential to the structure and func-

tion of all living cells.

RNA Ribonucleic acid molecule. It has an important role in

protein synthesis.



Index of Notation

Set of A-mers occurring in the set of input sequences S

Diagonally-punctured bicluster

Cut of height A in a matrix of co-occurrences M

Set of all configurations of the pair of A-mers (m,,ms)

in the ith sequence of &
Tolerance given with respect to variation in length of the
relative distance between pairs of A-mers in a configura-

tion

Set of indices of rows/columns belonging to a diagonally-

punctured bicluster

Set of indices of elements in the main diagonal belonging

to a diagonally-punctured bicluster

Matrix of co-occurrences over the set of sequences S with

€ tolerance
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(mT’7 m87 d)

pi s (M, Mg, d)

Occ; s(m)

os(my, mg,d)

os(mp, mg, d)

Configuration of a pair of A-mers, (m,,ms), denoting
the fact that they occur in the same input sequence at a
relative distance of d nucleotides

Membership function of configuration (m,.,ms,d) with
respect to the set of all configurations of (m,, ms) in the

1th sequence of &

Set of coordinates of all occurrences of a A-mer m in the

ith sequence in &

ith sequence in a set S

Alphabet over which all sequences are defined, typically
Y ={ATG,C}

Set of input sequences {S1,...,S:}

Score of a configuration (m,, ms,d) with respect to a set
of input sequences, S

e-tolerant score of a configuration (m,,ms,d) with re-

spect to a set of input sequences, &

Notation



Chapter 1

Introduction

1.1 Context

The research effort underlying this thesis was carried out at the ALGorithms for Simulation
and Optimization Group (ALGOS Group) of INESC-ID, Lisboa. This work benefits from the
contributions of many of the ongoing projects in the ALGOS Group (in the area of data mining
and bioinformatics) and it is part of a growing effort to embrace the field of computational
biology.

This work was partially supported by the Project BIOGRID POSI/SRI/47778/2002.

1.2 Aims

In recent years, especially after the completion of genome sequencing projects for various
organisms, there has been a growing interest in the study of regulation and gene expression
mechanisms. The amount of data now available not only concerning genome sequences but
also gene expression profiles makes it unfeasible to pursue a manual analysis, and calls for
some sort of automatic processing. The study of biological systems requires computational
approaches not only in the analysis of biological data but also in guiding laboratory research.
In this context, bioinformatics tools have become more and more central to the activity of
biologists.

Despite the remarkable success of these tools in some areas of application like gene finding,

sequence alignment, etc, there are still problems for which no significant results have been
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achieved. Notably, the identification of biologically meaningful nucleotide sequences in cis-
regulatory regions remains an open problem.

The identification and characterization of regulatory regions is a fundamental task since
the conditions that determine the activation and transcription of genes depend on nucleotide
sequences found therein, referred to as motifs. Many approaches have been proposed and one
can find a panoply of published papers describing novel algorithms to address the problem.

Currently available methods can roughly be classified in two main classes: probabilistic
and combinatorial. Other approaches have also been tried including methods using neural
networks, genetic programming, etc, but with unclear results.

Probabilistic methods have the advantage of requiring few search parameters but rely on
probabilistic models of the regulatory regions which can be very sensitive with respect to small
changes in the input data. Some of these methods also make simplifying assumptions about
the nature and abundance of the motifs to be extracted.

Combinatorial methods tend to be exhaustive but are left with two main problems: iden-
tifying biologically relevant results in the output and determining the appropriate extraction
parameters. For these methods, the problem of determining what portion of the output cor-
responds to a biologically significant result has been addressed mostly through the use of
statistical techniques and biological reasoning and it is a challenge in its own right. The prob-
lem of determining the appropriate extraction parameters is one of the central goals of this

thesis and can only be understood if we examine the way current algorithms operate.

A key feature of modern motif finders is the ability to extract complex motifs, i.e., non-
contiguous nucleotide sequences. The advantages of considering complex motifs are twofold.
On the one hand they are good representations of some instances of the underlying biological
phenomena and on the other hand they are easier to extract since the distance between
contiguous components can be a restriction that filters spurious output.

Currently there is, to the best of our knowledge, only one group of algorithms that allow the
extraction of complex motifs with an arbitrary number of components (SMILE /RISO [5,6]).
The SMILE/RISO algorithms are combinatorial approaches that prove to be effective and
efficient when the appropriate extraction parameters are reasonably bound.

The main goal of this thesis is to devise an efficient method to adjust extraction pa-

rameters for modern motif finders, particularly SMILE/RISO, using biclustering techniques.
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Furthermore, this method has been validated both with synthetic and real biological data.

1.3 Claim of contributions

In this thesis we propose a method to adjust extraction parameters for modern motif finders,
with an emphasis on the extraction of complex motifs. This method relies on a biclustering
algorithm that operates on a matrix of co-occurrences of small sequences. The performance
of this method is independent of the composite structure of the motifs being sought, making

few assumptions about their characteristics.

1.4 Layout of the thesis

In the next chapter we introduce the essential concepts required to understand the underlying
biological problem.

In chapter 3 we consider the computational problem of extracting motifs and discuss the
currently available methods.

In chapter 4 we present our proposal to address the problem of parameter specification
and introduce the concept of diagonally-punctured bicluster. An algorithm inspired by biclus-
tering techniques is described alongside the presentation of an algorithm to generate a matrix
of co-occurrences.

In chapter 5 we present the experimental results of our method with both synthetic and
real data.

In chapter 6 we discuss the approach we have taken and the results that have been
obtained while simultaneously presenting a roadmap for future research.

In order to facilitate the reading of this thesis we also present a glossary with key terms of

molecular biology and an index of notation that we have introduced to formalize our approach.

1.5 Conventions

In this thesis we will use the common conventions adopted in the computer science community,
with one notable exception. Many authors coming from the realm of computer science and

mathematics and who have subsequently embraced the study of life sciences (and those who
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did the opposite migration) giving birth to the multidisciplinary field of computational biology
sometimes struggle with matters of terminology. In particular, the terms sequence and sub-
sequence are many times used in bioinformatics to refer to the concepts of string and sub-string
which are well known in the field of computer science. We will adopt the terminology used
in the computational biology community and we shall always refer to sequences and sub-
sequences when we mean string and sub-string. Furthermore, we will use ¥ to denote the
alphabet over which all the sequences are defined. Throughout this thesis we will always
assume that ¥ = {A,T,G,C} but all assertions will be made to an unspecified ¥ alphabet,

unless otherwise indicated.



Chapter 2

Fundamentals of molecular biology

In this chapter we present the fundamental concepts required to understand the biological

problem that motivates the computational methods discussed in this thesis.

2.1 Structure of nucleic acids

The field of molecular biology greatly benefited from the discovery of the three-dimensional
structure of DNA by Watson and Crick in 1953 [7]. The DNA molecule, present in all living
cells, is the carrier of genetic information which is necessary to control all cellular activities.
This information is passed down to each new generation almost flawlessly. DNA is composed
of two strands of nucleotides forming a double helix (Fig. 2.1). A nucleotide is a molecule
formed by a pentose (deoxyribose in DNA), a phosphate group and a nitrogenous base. There
are four such nucleotides found in DNA, differing only on their nitrogenous base: Adenine
(A), Guanine (G), Cytosine (C) and Thymine (T).

The pentose sugar-phosphate links form the backbone of the DNA molecule and are located
in the exterior of the double helix. The two strands of DNA are kept together by hydrogen
bonds linking each pair of bases. In a complete helix, Adenine always pairs with Thymine
and Cytosine always pairs with Guanine. Because of this, the two strands are said to be
complementary (Fig. 2.2).

The information contained in DNA is represented by the specific sequence of nucleotides
in either strand (the sequence of nucleotides in the complementary strand can be inferred

considering the base-pairing scheme discussed earlier). It is, in fact, a digital repository of

5
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Figure 2.3: RNA versus DNA

information consisting of a text written with a four-letters alphabet.

Although DNA is structurally identical in all living cells, in prokaryotes consists of a single
circular molecule whereas in eukaryotes is found associated with several proteins to form a
complex named chromatin, which is located in the nucleus [8].

However, not all regions of the DNA molecule seem to carry information. Those regions
which do carry information are named genes and are said to be coding regions. Genes contain
the instructions necessary to direct biological activities in the cell and act by determining the
structure of proteins. Genes are expressed as final products that generally consist of proteins
which can serve different purposes: they can form part of the cell wall, act as catalytic com-
ponents (enzymes) or influence the expression of genes and are, therefore, actors in virtually
all cellular activities. The noncoding regions betweens genes are called spacer sequences. In
eukaryotic cells it is common to find genes which contain large amounts of noncoding regions.
In these genes, coding regions named exons are separated by noncoding regions named introns.

RNA is another nucleic acid related to DNA. There are some important differences between
these two molecules. Firstly, unlike DNA, RNA is a single stranded molecule. The pentose

found in RNA is ribose and not deoxyribose (thence the name of the molecules) and the
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Figure 2.4: Schematic representation of the processes involved in gene expression in prokary-

otes and eukaryotes

nucleotide Thymine is substituted by Uracil (U) (Fig. 2.3). Despite being a single stranded
molecule, RNA sometimes presents loops where homologous portions of the molecule self-
hybridize. Neither the different sugar nor the base substitution alter the base-pairing scheme
found in DNA. Interestingly, in livings cells, one can find always larger quantities of RNA
than of DNA. In fact, the amount of RNA varies with changing metabolic conditions whereas
the amount of DNA is constant (in cells which are not in the process of cell division). This is
consistent with the fact that RNA is a fundamental intermediary in the expression of genetic

information as we will see below.

2.2 (Gene expression

The central dogma of molecular biology [8] establishes a pathway for the flow of genetic
information: DNA — RNA — protein, i.e., from the DNA repository to the final products
of gene expression. The first process in which RNA molecules are synthesized from a DNA
template is called transcription. The RNA molecule thus obtained is called Messenger RNA
(mRNA). The subsequent process in which mRNA is used as a template for protein synthesis
is called translation.

In prokaryotes, transcription and translation occur almost simultaneously whereas in eu-
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Figure 2.5: The universal genetic code

karyotes the two processes take place in different parts of the cell. In these organisms the
transition from transcription to translation involves the migration of mRNA from the nucleus
to the cytosol alongside with certain modifications to the mRNA molecule in a process called
maturation. In Fig. 2.4 we can see a schematic representation of the different processes
involved in gene expression for both prokaryotes and eukaryotes.

The typical products of gene expression, proteins, consist of sequences of aminoacids.
Proteins, as we mentioned earlier, have a central role in all cellular activities and their function
depends on their three-dimensional structure which, in turn, is derived from the specific linear
ordering of their constituent aminoacids. The substitution of a single aminoacid in the chain
can change both the structure and the function of the molecule. Since proteins are synthesized
from an mRNA template it is not suprising to learn that the information about the sequence
of aminoacids is represented in the sequence of nucleotides of the nucleic acid. In fact, each
group of three nucleotides (codons or triplets) represents a particular aminoacid except for the
so-called stop codons which signal the end of protein synthesis. There is yet another special
triplet called start codon which, besides signalling the start of protein synthesis, also codes
for an aminoacid, usually methionine.

The correspondence between codons and aminoacids, which is virtually identical in all
living cells, is called the genetic code. Cells use 20 different aminoacids to build their proteins

and there are 43 = 64 different combinations of three nucleotides. In fact, several different
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triplets are used to code for the same aminoacid, although no triplet is used to code for more
than one aminoacid (Fig. 2.5). For this reason, the genetic code is said to be degenerate or
redundant. The degeneracy of the genetic code is what accounts for the existence of silent
mutations, i.e., DNA mutations that cause a codon to be changed into another which happens

to code for the same aminoacid thus yielding an identical protein.

2.3 Regulation of gene expression

The genes of an organism are not all simultaneously expressed. Their activation depends on
the current needs of the cell and is subjected to various regulatory mechanisms. One of the
most important mechanisms is the transcriptional regulation. Some of the noncoding regions
of DNA play a fundamental role in the regulation of transcription. These regions (regulatory
regions) contain small sequences of nucleotides, known as motifs, which are recognized by
proteins associated with the transcription machinery. The most common regulatory regions
are located upstream of the start of transcription and are called promoter regions or, in a
broader sense, cis-regulatory regions. The presence of these motifs is essential for the efficient
binding of the cellular transcription machinery. Different motifs can play different roles in
gene expression. While some are critical for eliciting the start of transcription others recruit

proteins which act as activators or repressors.

RNA polymerase is responsible for the transcription process. This enzyme, when examined

in wvitro, transcribes DNA into RNA but initiates at nonspecific sites on the DNA.
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In bacteria®, the RNA polymerase core is found associated to an essential subunit called
Sigma (o). This o factor imposes a level of specificity restricting the initiation of transcription
to promoter sequences. As many as seven different ¢ subunits have been identified [9], each
of which directs the RNA polymerase to bind a unique set of promoters. The most common
subunit is 0™ and is responsible for transcribing most genes. However, the association with
a o subunit will usually only yield a basal transcription level. The action of DNA-binding
proteins called activators which also bind specific motifs allow for higher levels of expression
by efficiently recruiting the RNA polymerase to specific genes (Fig. 2.6). On the other hand,
the binding of another sort of proteins named repressors to specific sites can halt transcription
altogether. Both activators and repressors can be referred to generically as transcription
factors.

A notable exception is ¢°* which binds to specific promoter sequences in a stable but
inactive state. It requires the action of an activator to start any level of transcription. Other
regulatory mechanisms in bacteria include the action of another kind of activator which induces
a conformational change in the promoter to elicit the start of transcription [9].

Transcriptional regulation in eukaryotes [8] is considerably more complex although the
same basic principles apply. In fact, eukaryotes use different types of RNA polymerase for

different purposes. The most studied type which is also responsible for transcribing most

Tt is worth noting that bacteria are prokaryotic organisms.
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genes is RNA polymerase II. This type of RNA polymerase requires several general transcrip-
tion factors to form a functional transcription initiation complex. As with bacteria, specific
transcription factors modulate the activity of RNA polymerase.

The regulation of transcription in eukaryotes is primarily made at the level of initiation of
transcription although in some cases it may be attenuated or stimulated at subsequent steps.
Many genes in eukaryotic cells are controlled by regulatory sequences located far upstream
from the transcription start site (sometimes over 10 000 nucleotides). These sequences, called
enhancers, were found to stimulate transcription and are binding sites for transcription factors
which are allowed to interact with the transcription machinery because the intervening DNA
can form loops (Fig. 2.7). Interestingly, enhancers are active regardless of orientation with
respect to the direction of transcription and can be located either upstream or downstream of
the transcription start site. In addition to these regulatory mechanisms, eukaryotic cells can
also regulate transcription by modifying the state of condensation of chromatin.

Genes which are co-regulated are bound to share at least a subset of motifs which corre-
spond to binding sites of transcription factors. Similarly, genes from closely related species,
performing the same biological function and purportedly having evolved from an ancestral
gene (orthologous genes), are expected to have conserved regulatory sequences. Finding com-
mon sequences in the regulatory regions of these sets of genes is the basis for the operation of

motif finders as we shall see in the next chapter.



Chapter 3

Related work

3.1 Motif finding

The identification of promoter sequences and binding sites for transcription factors is one of
the most important tasks in the study of gene regulation. The search for the elements involved
in gene expression regulation consists, essentially, in the identification of well conserved regions
in noncoding DNA.

These well conserved regions are usually referred to as consensus sequences or motifs.
Motif finding is the problem of discovering these motifs without any prior knowledge of their
characteristics. As we said in the previous chapter these motifs can be sought by analyzing
regulatory regions taken from genes of the same organism or from related genes of different
organisms.

The first approach is based on the assumption that motifs common to a number of regula-
tory regions are likely to have a relevant role in gene expression regulation. In this approach
we can largely benefit from knowledge derived from microarray experiments or from quanti-
tative proteomics analysis which allows us to group genes that are coordinately expressed in
certain experimental conditions. It is, then, reasonable to assume that some of these genes
will be co-regulated, in the sense that they will share active regulatory elements.

The second approach, known as phylogenetic footprinting [10], requires careful selection
of what sequences to include. These sequences must correspond to regulatory regions of genes
which are evolutionarily related and that are involved in the same biological activities in

different species. This approach is based on the assumption that functional regions of DNA

13
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suffer fewer mutations than non-functional regions due to the selective pressure to preserve
their biological role. Well conserved regions across these sequences are therefore expected to

have a regulatory function.

Given a set of genes chosen following one of the previously described approaches, the
task of identifying their regulatory regions is not always straightforward. In eukaryotes, the
regulatory elements can be located quite far upstream from the start of transcription but cover
only a small portion of the intergenic regions [8,11]. As a rule of thumb, one can choose to
consider stretches of up to a few thousand nucleotides upstream from the transcription start
site. However, in the case of enhancers, active binding sites can be located downstream of
the gene or even in introns. In prokaryotes, intergenic regions are usually much smaller and
regulatory elements are located fairly near the start of transcription. However, prokaryotic
genes also tend to cluster in structures called operons which share a regulatory region governing
the expression of all the genes in the group [8,9]. Moreover, there are cases in which genes of
an operon contain secondary promoters in addition to the common regulatory region so that
even if information were available about which genes form operons (which, generally, is not)

the corresponding intergenic regions could not be discarded without careful analysis.

It is also known that the transcription machinery will recognize binding sites even if the
motifs do not occur exactly [12], i.e., if there are some nucleotide substitutions or even inser-
tions and deletions. Since we cannot always confidently establish a set of co-regulated genes
a computational approach to motif finding should also permit motifs not to occur in all input

sequences.

An algorithm to address motif finding (i.e., a motif finder) should, therefore, tackle the
problem of extracting motifs under these difficult conditions and with relatively few informa-
tion. This problem is sometimes referred to as ab initio motif extraction. A related problem
is motif localization which consists in the identification of the occurrences of a motif in a
sequence given a motif description. In this thesis we are mainly concerned with motif finding.

However, both problems bear the question of motif representation.

Motifs have been represented as a nucleotide sequence (consensus sequence), a profile
matrix, a weight matrix, an automaton or a sequence over a degenerate alphabet [12], but
most modern motif finders report extracted motifs as plain nucleotide sequences or as a weight

matrix. These weight matrices, called PWM (Position Weight Matrices) or PSSM (Position
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Specific Score Matrices) generally represent contiguous nucleotide sequences of a certain length
. These |X| x [ matrices keep, for each position in the motif, a score for each character in
the nucleotide alphabet. Recall that a PSSM is describing a set of motif occurrences so these
scores should allow us to distinguish a true occurrence from a non-occurrence.

The first attempt to compute the scores for these weight matrices used a perceptron |13]
and was aimed at detecting translation initiation regions in mRNA. The weights of the matrix
were the same computed for the neural network, given the appropriate encoding for each motif
occurrence to be described.

Later attempts computed the scores as the negative logarithms of the frequencies of each
nucleotide at each position [14 16]. The sum of the scores for any particular sequence yields
the negative logarithm of the probability of observing that particular sequence in the collection
of described motif occurrences, assuming that the positions are independent.

In [17], a study was made concerning the information content held by several known
binding sites at each position. This culminated in another way to compute the scores of the
PSSM [18| where each element in the weight matrix is calculated as:

H(b,i) = —In @

Do
where b € X is one of the four nucleotides, 4 is a position in the motif being described, f;
is the frequency of the nucleotide b in position ¢ across the set of occurrences and py is the
frequency of nucleotide b across the entire genome of the organism being considered. It is not
clear, however, what p; should be when we try to describe occurrences of motifs taken from
regions of different organisms. In [19] the authors noted the lack of a good estimate of the
statistical significance of observing a specific information content and proposed a method for

calculating the p-value of an information content score.

It is easy to see that in the methods discussed so far the score of a particular sequence is
simply the result of the additive contribution of the scores of each nucleotide in each position.

More recent definitions compute the score of each element of the matrix as the rela-
tive frequency of each nucleotide introducing pseudo-counts to compensate for small learning

sets [12,20]. In this approach, each element is computed as:

m;(k) + by,

Wk, j) = "0

where m;(k) denotes the number of times the nucleotide k& € ¥ occurs in position j in the set of
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known binding sites, by is the pseudo-count introduced for each nucleotide k, m is the number
of known binding sites and b = ), .y, by. In this case, the score of a particular sequence is the

product of the corresponding elements.

Using weight matrices to represent a motif has the clear advantage of capturing much
more information about the putative binding site than other representations. For instance,
many transcription factors will recognize, at some positions, a purine (adenine or guanine), a
pyrimidine (cytosine or thymine), a weak bond (thymine or adenine) or a strong bond (cytosine
or guanine) regardless of the specific nucleotide present therein. This information is not so
clearly represented by an equivalent collection of plain nucleotide sequences (patterns). On
the other hand, plain sequences are more appropriate for motifs with few degenerate positions

and facilitate the problem of determining what is a motif occurrence.

There are two major classes of motif finders: probabilistic and combinatorial. Although not
all algorithms fit adequately into this classification, the most popular motif finders currently

available do.

Probabilistic methods include approaches based on EM (Expectation-Maximization) |21]
like PROJECTION [22] and MEME [23,24] or its stochastic analog, Gibbs sampling [25 27|
used by GIBBSDNA [25]. These methods use a two-phase iterative procedure where in the
first step the likeliest occurrences of the motif are identified, based on a model computed in
the previous iteration. The second step adjusts the model for the motif (usually a weight
matrix) based on the occurrences determined in the previous step. In the first iteration the

parameters of the initial model are usually set randomly.

Some probabilistic approaches assume that the motif will occur in all input sequences or
require the specification of a fixed length. The most flexible algorithms in this class require
only a length range to be specified. The major drawback with these algorithms is their
sensitivity to noise in the data and the fact that they are not guaranteed to converge to a
global maximum. Moreover, most of them assume that there will only be one motif occurring
in the input sequences and at most once in each sequence. Some algorithms like MEME have

removed these assumptions but are less efficient |23, 24].
CONSENSUS [19] is a greedy algorithm that outputs PSSMs, saving instances with the
best information content score in each step. It is, once again, not guaranteed to find optimal

solutions but it can cope with zero or multiple occurrences of the motif in each input sequence.
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Combinatorial methods, which typically extract motifs consisting of plain nucleotide se-
quences or sequences over a degenerate alphabet, usually involve enumerating all possible
patterns either explicitly or implicitly. The simplicity of this approach allows us to define a
clear computational problem. Consider a set of sequences S = {S1,So,...,S:}. We are asked
to find motifs within a range of lengths [, - . ., lmax, Which occur on ¢ < t of the presented
sequences with at most e mismatches, i.e., at most e nucleotide substitutions (also referred
to as having a Hamming distance up to e). It follows from this definition that a motif may
or may not occur exactly on the given set of sequences, due to the allowed degeneration. For
instance, in the example illustrated by Fig. 3.1, only the motif CATAT is extracted, whereas
in the case of Fig. 3.2 motifs CATAA, CATAC, CATAG and CATAT satisfy the extraction
parameters. The reason for requiring the motif to occur in less than t sequences is related to
the fact that some input sequences may be corrupted in the sense that they may not actually
contain the motif being sought. Algorithms that take this approach either enumerate all pos-
sible patterns of a fixed length [, which we will henceforth refer to as an [-mer, and verify its
occurrence in the input sequences with at most e mismatches (pattern-driven approach) or
take each [-mer occurring in the input sequences and generate its e-mismatch neighbourhood,
i.e., all the patterns up to e mismatches away from the pattern being considered, and keep a
table with a hit count, reporting all patterns above the ¢ threshold (sample-driven approach).
Several branch-and-bound algorithms have been proposed in the last few years that try to
reduce the exponential search space taking advantage of sophisticated data structures. The
MULTIPROFILER algorithm [28] follows a sophisticated sample-driven approach whereby
it manages to avoid generating the e-mismatch neighbourhood for all sampled sequences. PAT-
TERNBRANCHING [29], on the other hand, manages to avoid analyzing all the patterns in the
e-mismatch neighbourhood of a sample sequence. The WINNOWER algorithm [2] is based
on graph theory. It represents each [-mer as a vertex in a graph and each pair of vertices is
connected by an edge if the two [-mers have no more than 2e mismatches. Motifs are found
by identifying cliques in the graph. MITRA |[3] relies on a mismatch tree that partitions
the search space. Each branch of the tree is labeled with a letter representing one of the
four nucleotides and each node is associated with the [-mers in the input sequences whose
prefix matches the path-label of the node with at most e mismatches. The algorithm will stop

branching as soon as it determines that the subspace associated with a node is unable to hold
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cis—regulatory region gene

GATTGCATCATATATCCGATT AGCCGATTA.. ..

GACCGTACGCCATATGAAGCAATTGCATTAC. ..
ACTCATATGCCTACTTAGCTAGCTAATTTGC. ..
Reports: CATAT

Figure 3.1: Motif extraction for / =5, e=0and ¢g=t =3

cis—regulatory region gene

GATTGCATCATAGATCCGATT AGCCGATTA.. ..

GACCGTACGCCATACGAAGCAATTGCATTAC. ..
ACTCATAAGCCTACTTAGCTAGCTAATTTGC. ..
Reports: CATAA, CATAC, CATAG and CATAT

Figure 3.2: Motif extraction for/ =5, e=1and ¢q=t=3

a motif occurring in a least ¢ < ¢ input sequences. SMILE [5] and RISO [6] use a generalized
suffix-tree [30,31] to represent the set of input sequences. They then perform an exhaustive
lexicographic search to identify motifs which occur in ¢ < ¢ input sequences with at most e
mismatches. While traversing the suffix-tree the algorithm avoids visiting all nodes by halting
the search whenever it determines that the restrictions imposed by the extraction parameters

can no longer be met.

Despite the fact that these algorithms take exponential time or space in terms of [, they
represent a straightforward approach to motif finding and, unlike the probabilistic methods,

their output is easily interpreted.

The major problems with combinatorial motif finders are their inability to discriminate the
relevant extracted motifs from the potentially numerous false positives and the large number
of parameters that need to be specified (especially when searching for complex motifs as we
will discuss in the next section). The large number of false positives is mostly dealt with using
statistical tests to assess how unexpected is an extracted motif for a specific set of parameters,
given the statistical characteristics of the input sequences [32-34|. Addressing the problem of
the large parameter space is the central aim of this thesis and will be discussed in the next

chapter.
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3.1.1 Extraction of complex motifs

So far we have mainly discussed the extraction of motifs consisting of contiguous sequences
of nucleotides, also known as simple motifs, monads or ungapped patterns. In effect, early
algorithms had little or no support for the extraction of motifs with gaps. These motifs with
gaps or spacers, which we will refer to as complex motifs, otherwise known as composite motifs,
structured motifs or multi-ads (dyads, triads, etc.) consist of several ordered simple motifs at

a certain distance of one another.

The advantages of considering complex motifs are manyfold. On the one hand, complex
motifs can be better models of promoter regions. Some transcription factor DNA-binding do-
mains have a composite structure, forming dimers (helix-loop-helix or leucine-zipper domains)
and the cooperative binding of several transcription factors and RNA polymerase to the DNA
molecule also seems to be bound by distance restrictions. On the other hand, many authors
now agree that component motifs may be too weak to be extracted in isolation, i.e., they may
be poorly distinguishable from the surrounding noise in the sequences, but by imposing a cer-
tain distance between component motifs an unusual (and thus statistically significant) pattern
may be identified. This is a critical issue for algorithms that extract too many motifs and are
left with the problem of deciding which of them are to be considered relevant. In addition to
these advantages, complex motifs can be used to model simple motifs with highly degenerate
central regions. In this case, the gap between component motifs effectively corresponds to a

set of wildcards.

As we said, most motif finders have limited ability to incorporate gaps. However, in recent
years several proposals have been published. Some combinatorial as well as probabilistic algo-
rithms can now extract complex motifs although usually with no more than two components
and often searching for a gap of a fixed length. These approaches are in general not very
efficient since they enumerate all possible motifs with two components either explicitly [1] or
by preprocessing the input sequences, as is the case with WINNOWER |[2] and MITRA |[3,4].
This preprocessing involves generating virtual (I; 4 l3)-mers resulting from the concatenation
of every [i-mer at a certain range of distances from every other lo-mer in the input sequences
thereby reducing the problem to finding simple motifs. If the range of acceptable distances
between each component is wide this method becomes very inefficient in practice, especially

for large or numerous input sequences. These methods are, therefore, restricted to considering
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Figure 3.3: Representation of a data matrix

relatively short motifs and a limited range of distances between each component.

To the best of our knowledge, there is only one family of algorithms which can efficiently
search for complex motifs with an arbitrary number of components separated by a vari-
able distance and, in addition, is able to incorporate mutations in any of the components:
SMILE/RISO |5,6]. These combinatorial algorithms take advantage of a suffix-tree to deliver
their unmatched flexibility. However, there is a price to pay for this flexibility which has to do
with the size of the parameter space and the need to adjust the search parameters to obtain

a tractable output.

3.2 Biclustering

In the next chapter we will introduce a method for parameter estimation using biclustering
techniques. It is, then, important to offer some background on the problem of identifying
biclusters and to discuss currently available algorithms.

Biclustering algorithms have already been extensively used to address problems in the field
of computational biology, in particular, in the analysis of gene expression data [35]. Usually,
gene expression data is arranged in a data matrix, where each row corresponds to a gene
and each column corresponds to an instant of time or an experimental condition. Fig. 3.3
illustrates a data matrix where each row z; can represent a different gene and each column y;
a specific condition.

In order to identify an activation pattern common to a group of genes under a subset
of all the experimental conditions we have to search for a proper sub-matrix, i.e., a subset

of rows and a subset of columns. Traditional clustering algorithms are not able to achieve
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this, since they would only identify either a subset of genes presenting a similar behaviour
across all experimental conditions or a subset of conditions where every gene behaves simi-
larly. A new approach which came to be known as biclustering allows us to group rows and
columns simultaneously reporting a subset of genes exhibiting a similar behaviour on a subset

of conditions.

Given a data matrix, A, with n rows and m columns, a;; is the matrix element on row
i and column j. Matrix A, can be seen as a set of rows X = {z1,...,2,} and columns
Y = {y1,...,Ym}, denoted by (X,Y). A bicluster, B, being a subset of rows I C X and
columns J C Y, can be denoted by (1, J).

The problem addressed by biclustering algorithms is the identification of a set of biclusters
By = (Ix, Ji) given a data matrix A, so that each element on a bicluster By, satisfies some
specific characteristic of homogeneity. In this thesis we are only interested in identifying a
variation of constant biclusters, i.e., a bicluster, (I, .J), where each of its elements has the same
value, o, i.e., a;; = afor all i € I,j € J. A bicluster that obeys the previous condition is said
to be a perfect constant bicluster, but in many situations one is content with a near-constant

or low-variance bicluster.

A data matrix can be seen as a representation of a weighted bipartite graph. A graph
G = (V,E), where V is the set of vertices and E the set of edges, is said to be bipartite
if its vertices can be partitioned into two sets L and R (V = L U R), such that every edge,
(u,v) € E, issuch that u € L and v € R. A data matrix A = (X,Y’) can be seen as a weighted
bipartite graph where each node n; € L, corresponds to a row and n; € R corresponds to
a column. The edge (n;,n;) € E has weight a;; denoting the matrix element on row 4 and

column j.

The problem of finding biclusters can be equated with the problem of finding a biclique
in a bipartite graph. A biclique in a bipartite graph, G = (L U R, F), is a sub-graph G’ =
(L'UR/',E") such that L' C L, R* C R, F' = {(u,v) € E:u € L',v € R'} in which (u,v) € F’
for all w € L’ v € R'. Fig. 3.4 shows a bipartite graph, with each l; and r; vertex pertaining
to the L and R partitions, respectively. The maximum size biclique, in this example, is the

one formed by vertices [y, ls, 71, ro and the edges between them.

Considering the simplest case, when our data matrix A is a binary matrix, i.e., a matrix

whose elements are either 0 or 1, the corresponding bipartite graph will contain the edge
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Figure 3.4: Example of a bipartite graph

(ni,n;) iff a;; = 1. In this case, a constant bicluster in A with each a;; = 1 corresponds
to a biclique in the bipartite graph. Thus, identifying a maximum size bicluster in A is
equivalent to finding a maximum edge biclique in a bipartite graph, which is known to be
an NP-complete problem [36]. The search for more sophisticated types of biclusters that has
to perform computations on the actual value of each matrix element is necessarily not less
complex than this case. It is not surprising, then, that most algorithms that address this
problem use heuristic approaches.

In many situations, however, we have to consider the fact that the value of an element
a;; in the data matrix must be seen as the result of the contribution of all the biclusters that
share row ¢ and column j. To account for this situation, some authors have introduced a plaid
model [37] in which each element of the data matrix is viewed as a sum of layers. The plaid

model can be defined as follows:

K

ij = E Osjkpikkjk
k=0

where K is the number of layers (biclusters) sharing row ¢ and column j of the data matrix,
0;jx denotes the contribution of bicluster By, for the value of the specified matrix element, and
where p; and kj;, are binary values representing the membership of row ¢ and column j with
respect to bicluster By. The value ;59 is used to model a possible bicluster including the entire
data matrix contributing with a background value common to all matrix elements. Therefore,

we define pjo = kjo = 1. This has been designated as the general additive model [35]. If we
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are considering only constant biclusters then 0;;; = aj, where «y is the constant value of all
elements of By.

Similarly, one can define a general multiplicative model |35], as such:

K

aij = [ [ Oswpintiin
k=0

Current algorithms will either try to identify a single bicluster which maximizes a given
merit function (e.g. minimum variance, in the case of constant biclusters) or a given number
of biclusters. To this effect, the different methods can take one of many approaches. In one
approach, the algorithms will discover one bicluster at a time |37,38|. In this case, previously
identified biclusters need to be masked (usually with random values) so that the algorithm does
not repeatedly extract the same bicluster or they can extract each bicluster iteratively relying
on a plaid model. In another approach, the methods may try to discover a set of biclusters at a
time [39-41|. These methods usually rely on hierarchical clustering algorithms that iteratively
generate clusters of rows and columns which are subsequently combined to extract biclusters.
Finally, the algorithms can try to discover all biclusters simultaneously [42 44|. In this case,
they usually rely on a set of initial biclusters called seeds which are obtained by randomly
assigning rows and columns to each. The algorithms will then start an iterative process in
which they try to improve the quality of the biclusters with respect to a merit function by
adding or removing rows and columns. Another alternative is to try to exhaustively enumerate
all biclusters [45 51], an approach we will discuss below.

Currently available biclustering algorithms have been divided into five classes:
1. Iterative row and column clustering combination

2. Divide and conquer

3. Greedy iterative search

4. Exhaustive bicluster enumeration

5. Distribution parameter identification

The first class is the most straightforward approach to biclustering and consists of al-

gorithms which try to iteratively combine clusters of rows and clusters of columns obtained
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separately [40,41,48]. The class named divide and conquer refers to algorithms which break
the problem into several similar subproblems of smaller size |39,52|. These smaller problems
are then recursively solved and subsequently combined to obtain a solution to the original
problem. These methods generally work by splitting the data matrix into sub-matrices ac-
cording to some heuristic function. Divide-and-conquer algorithms are potentially very fast
but they may miss an undefined number of biclusters whose elements occur across various
sub-matrices and which are consequently split before they can be identified. Methods which
perform a greedy iterative search proceed by always making the locally optimal choice hoping
that it will lead to a good global solution [38,42-44,50,51,53|. These methods are based in the
greedy addition or removal of rows/columns in order to maximize a merit function. The class
of algorithms performing ezhaustive bicluster enumeration [45 47 is based on the observation
that the best biclusters with respect to a merit function can only confidently be identified
using a thorough analysis of all possible biclusters. There is, however, an exponential number
of possible biclusters in terms of the size of the data matrix. These methods, therefore, are
forced to assume restrictions on the size of the biclusters and to use efficient techniques if
they are to be of practical use. Finally, algorithms based on distribution parameter identifi-
cation 37,54, 55| assume that biclusters are generated according to a statistical model. The
rationale is, therefore, to estimate the distribution parameters that better fit the data. This
is done by relying on an iterative procedure which tries to minimize a given criterion.

In the next chapter we will discuss a method that uses biclustering techniques relying on
an algorithm which can be placed within the class of algorithms performing greedy iterative
search. Despite using a non-conventional definition of the problem it will still apply the basic

principles discussed in this section.



Chapter 4

Inference of complex motifs

Current methods for the extraction of complex motifs have a major drawback. Their output
is, in practice, extremely sensitive with respect to input parameters. If we are too permissive
by allowing a high degree of degeneration or by considering a large range of allowable lengths
or yet, if we require the motifs to be present only in a small fraction of the input sequences,
we may get an incommensurate number of motifs as output and we are left with the problem
of identifying the biologically relevant ones. On the other hand, if we specify rigid parameters,
like a specific length, low degree of degeneration and require the motif to be present in all
sequences we may get no output at all. In fact, without any prior information, any rigid
parameter specification is purely speculative. These problems are even more pressing for
complex motifs where one needs to specify the number of components, the allowed length and
the number of mismatches for each, and also the distance between components. An exhaustive
search in the parameter space in this case is absolutely unfeasible. In this thesis we present
a method which can address these issues by avoiding some degree of parameter sensitivity,
especially in what concerns complex motifs.

In [5], Sagot pointed out the need to distinguish between a motif and its occurrences in the
input sequences. In fact, Sagot avoided the use of the term motif altogether introducing the
notion of model. A model corresponds to a description of what constitutes a model occurrence.
This distinction is particularly useful for complex motifs. A model (simple motif) is defined
as a sequence over X 7. A model m is said to have an e-occurrence, or simply an occurrence,
in the input sequences, if there is a word v in the input sequences at a Hamming distance of

m not greater than e. A model is said to be valid if it has occurrences in at least ¢ < t input

25
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sequences. A structured model (complex motif) is defined as a pair (m,d) where:
e m = (m;)1<i<p is a p-tuple of models (m; € 1), denoting p components

o d = (dmin, > dmax;, % )1<i<p—1 is a (p—1)-tuple of triplets, denoting the p—1 gaps between

components

Furthermore, considering a set of input sequences S = {51, ..., S}, a structured model is
said to be valid if, for all 1 < ¢ < p —1 and for all occurrences u; of m;, there are occurrences

Ui, ..., u, of simple motifs mq,...,m, such that:
® ui,...,u, belong to the same input sequence

e there exists d;, with dpyin, +0; < d;j < dmax, — 0;, such that the distance between the end

position of u; and the start position of u;41 in the sequence is in [d; — d;, d; + §;]

e d; is the same for the p-tuple of occurrences present in at least ¢ < ¢ distinct input

sequences

These definitions serve the purpose of a motif finder which needs to restrict the search
space and to decide what is a sufficiently common pattern so that it can be reported. They
offer a clear definition of what should be extracted and reported as a valid motif under specific
search parameters, including the number of components, and the distance parameters.

Our purpose is to identify features in the input sequences that indicate the presence of
interesting patterns (not unlike motif finders in this regard), by taking a broader view of the
search space. We make no assumptions about the number of components of the complex
motifs we are looking for, nor about the distances between each component. We sacrifice,
however, the predictability of the results insofar as the method we propose is not guaranteed
to identify the presence of all interesting complex motifs and will also be vulnerable to the
possibility of reporting false positives. Furthermore, as an initial approach, we do not consider
the search for motifs with degeneration.

In this context, we define a complex motif loosely as being composed of an undefined
number of component simple motifs each separated by a distance that is allowed to vary
within an interval of width 2e, this means that a complex motif can be seen as a pair (m,d)

where m = (m;)1<i<p, with m; € Yt and d = (di)1<i<p—1. An occurrence of a complex motif
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Sy:  TAACCTGGTACA
Sy:  CGAATCTTGGTC
S3:  GGAACTGCGGTG
Sy:  CTAATCCTAGGC
Ss:  GTAACTTCCGGT
Sg:  TCAAGCCTAGGC

Figure 4.1: A set of input sequences

is, similarly, a set of exact occurrences of each component simple motif, u,...,u, in the same
input sequence, where each occurrence is separated by a gap whose length is in [d; — ¢, d; +€].
The only parameter we are expected to specify is €. All the other characteristics of the

complex motif are to be identified by this new exploratory method.

4.1 Matrix of co-occurrences

As we have said, the motivation for the method we propose is the need to avoid arbitrarily
defined extraction parameters. Thus, instead of seeking motifs which conform to certain pre-
defined criteria, we try to characterize certain features of the input sequences. To that effect,
we begin by building a matrix of co-occurrences, M, as we will explain below.

To build this matrix we will first need to identify all occurrences of sequences of very small
length, A, i.e., all A-mers in the input sequences, S = {S1,...,S¢}.

Let L(S) = {m1,...,m.} be the list of all such A\-mers' , noting that z < |X|}. Fig. 4.1
shows a set of input sequences that we will use to illustrate the definitions given below. In

this example we will use A = 2 to make it easier to follow.

Definition 4.1 (List of occurrences of a \-mer) Let S be a set of input sequences and

let m € L(S). Occ; s(m) denotes the set of coordinates of all occurrences of m in S; € S.

This set, Occ; s(m), is therefore a list of integers denoting the positions at which we can

find m on a sequence S; € §. Whenever the set of input sequences, S, is clear from the

!Good mathematical practice would advise us to denote the list of all \-mers on a set of sequences S as
Ly (S). We will, however, omit the X lest our notation becomes too dense. We will assume that the value of A

is fixed and known across all definitions.
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context we will simply write Occ;(m). Concerning the example in Fig. 4.1, it is easy to see

that Occ3(GG) = {1,9}, Occy(AA) = {2} or that Occg(TT) = 0.

Definition 4.2 (Configuration of a pair of \-mers) Let S be a set of input sequences. A

configuration of a pair of A\-mers is a triple (my, ms,d), with m,,ms € L(S) and d € Z\ {0}.

In this definition we simply introduce a mathematical object which we call a configuration.
This object is associated to a set of input sequences and will be used to denote the co-

occurrence of a pair of A-mers in a specific relative position.

Definition 4.3 (Configurations of a pair of \-mers over a sequence S; € §) Let S be
a set of input sequences and let m,, mg € L(S). A; s(my, ms) denotes the set of all configu-

rations of m, and mg over S; € S.
Ai,S(mmms) = {(mr7m57 d) td = Cs — Cr,Cr € OCCi,S(mr)a Cs € OCCi,S(ms)a Cr 7é Cs}

Note that if we consider the configuration (m,,ms,d) and if d < A then the configu-
ration actually represents the occurrence of a (A + d)-mer. It is also interesting to note
that A; s(mg, my) = {(ms,my,d) : (Mmy,mg, —d) € Ajs(my,ms)}. Once again, we will use
A;(my,ms) every time the set of input sequences is clear from the context. Considering
the previous example, we can observe that Ag(AA,GG) = {(AA,GG,—2),(AA,GG,6)} or that
Ag(AA, TT) = 0.

Definition 4.4 (Score of a configuration of a pair of \-mers) Let S be a set of input
sequences and let m,, ms € L(S) and d € Z.
HiS - YA x BA x Z i+ {0,1} is the membership function of a configuration with respect to
the set of all configurations of the two A-mers on an input sequence S; € S, defined as:
1 if  (my,ms,d) € Ajs(my, mg)

Hi,s (my,ms,d) =
0 otherwise

05 : YAX YA X Z v {0,...,|S|} is the score function for a configuration and is defined as:

S|
os(me,ms,d) = i s(my,ms, d)
i=1
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The score of a configuration of a pair of A-mers is nothing more than the number of
sequences where that particular configuration can be observed. Like in previous definitions, we
will use o(m,, mg, d) without mentioning the set of input sequences whenever it is clear which
set we are considering. In the example of Fig. 4.1 we have o(AA,GG,7) = 3, since GG occurs
7 positions after AA in sequences Sy, S5 and Sg, yielding p4 s(AA,GG,7) = us s(AA,GG,7) =
116.5(AA, GG, 7) = 1.

Definition 4.5 (e-tolerant score of a configuration of a pair of \-mers) Let S be a set
of input sequences and let m,,ms € L(S) and € € Ng. The e-tolerant score of a configuration

o5 YA x ¥A x Z — Ny is defined as:

S|
os(my, mg, d) :Zk max  f; s(my, mg,d+ k) (d #0)
£

—1 o

Furthermore, 05(m,, ms,0) = 0.

The concept of e-tolerant score of a configuration of a pair of A-mers addresses the need
to allow for a configuration to have slight variations. This removes the strictness of requiring
a pair of Ad-mers to co-occur at fixed relative positions in order to have a high score. This can
be illustrated by the example shown in Fig. 4.1 where o(AA,GG,7) = 3, 0(AA,GG,6) = 2 and
o(AA,GG,5) = 1 but o'(AA,GG,7) = 5, o' (AA,GG,6) = 6 and o' (AA,GG,5) = 3. A I-tolerant
score is able to grasp the fact that the 2-mer AA co-occurs with GG in all input sequences at a
distance of 61 positions. Incidentally, o' (AA, GG,4) = 1, despite the fact that o(AA, GG, 4) = 0.
This can be useful to describe patterns of co-occurrence that have a high e-tolerant score even

though they never actually occur in the input sequences.

Definition 4.6 (Most common configuration of a pair of \-mers) Let S be a set of in-
put sequences and let m,,ms € L(S). A configuration (m,,ms,d*) is said to a most com-
mon configuration of the two A-mers if, for every configuration (m,,ms,d), os(m,,mg,d*) >
os(my,ms,d).

Furthermore, we say it s a e-tolerant most common configuration if the same assertion

holds for the e-tolerant score.

The notion of most common configuration will be used to find the configuration or, indeed,

the configurations with the highest score for a pair of A-mers. From the example shown in
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s|e|2|sls|8|8|s|s|8|8|s|=|e|e]E
AA | O | 3| 2|2 1 31216226 |4|3|3]|3]|2
AC | 3 1 010 1 1 213 1 1 31312 1 2 1
AG 2|01 |11 |2|02]|0]22]|02]2[0]0
AT (201002121121 |1]2|1]1
caj1jy1rf1yo0fo0j1rjyof1rjof1rjrfrjp1rjrj1yjo
cC 1 2 1 1 0 1 31012 (4]2]|2]2 1 1
CG 210 1 0 1 0] 2 1 1 212 1 1 1 1
CT| 6|3 2|2 1|32 |1|2|3|5|3]|3]2]|3]2
GA(2|1j0|1jO0|JO0O}|1 2|01 |2]|2|0]1|2]1
G |2 |1(2|1 1213|1121 (2]21]0
GG | 6| 3|22 1 4 125 |22 1 4 (3|33 2
GT [ 4| 3]0 1 1 212 13)|2 1 4 1 21232
TA | 3| 2| 2 1 1 2 1 3102|3222 1 1
({3 |1}{2|2|1|2|1(2|1 2|32 |2|1|1]1
(320|111 |1}{3|2|1 3|3 |1]1|1]1
TT | 2 1 0 1 0 1 1 2 1 01212 1 1 1 0

Figure 4.2: Matrix of co-occurrences, M!, for the input sequences of Fig. 4.1

Fig. 4.1 it is easy to see that the most common configuration for the pair (AA, GG) is (AA, GG, 7).
The 1-tolerant most common configuration is, however, (AA, GG, 6).
We can now define a matrix of co-occurrences that gathers the information about the

e-tolerant score of the most common configuration of every pair of A-mers.

Definition 4.7 (Matrix of co-occurrences) Let S be a set of input sequences. A matriz
of co-occurrences over S with € tolerance, MS, is the matriz where each of its elements a;; is

defined as:

a,-j = afg(mi, mj, d*)

where (m;,mj,d*) is a e-tolerant most common configuration of m;,m; € L(S) and i,j =

1,...,|L(S)|.

The matrix of co-occurrences , M, derived from the input sequences of Fig. 4.1 is shown
in Fig. 4.2. We can see, by inspecting the matrix and the input sequences, that there are two
configurations with the maximum 1-tolerant score: (AA,CT,3) and (AA,GG,6). In this case, it
is easy to see that AA co-occurs with CT in all sequences at a relative distance of 3 £ 1 and

with GG, also in all sequences at a relative distance of 6 £ 1.
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The matrix of Fig. 4.2 is symmetric. The next lemma will prove that it is always the case.

Lemma 4.1 A matriz of co-occurrences, M3 is symmetric, i.e., a;; = aj; for every i,j =

1,...,|L(S)|.

ProOOF
Let us assume there are p,q € {1,...,|L(S)|} such that ap; # agp. This entails the
assertion that og(my, mg,dy,) # 05(mg, my, dy,), where (my, mg,dy,) and (mg, my,d;,) are

e-tolerant most common configurations of (mp, mq) and (mg, my), respectively.

Let us consider, without loss of generality, that o5 (my, mgq,d;,) > o5(mg, my, dy)

It follows that
S| S|
Z nax €Mi7$(mpv My, d;q + k) > Z i max €M2‘,S(mlb Mp, d:;p + k)

P =—c,.., “—o =—c,..,

It is easy to see that A;s(my,my) = {(myp,mq,dy,) @ (Mg, mp, —dy,) € Ajs(mg,mp)}.

Therefore, for every sequence S; we have that p; s(my, mg,dy,) = pis(mg, my, —d;,). And

consequently,
S| S|
Z max fis (mp, mg, dy, + k) = Z max s (mg, mp, —dy, + k)
=0 =0

But this means that o5 (mg, my, —d;,) > o5(mg, my, d;,) which contradicts the fact that

a)

. :
(Mg, mp, d,) is a e-tolerant most common configuration of (mg, my).
O

Algorithm 1 computes the matrix of co-occurrences with e-tolerance. We will now show
that its time complexity is O(N?) where N = L‘i‘l |S;|. It is easy to see that the lists of
occurrences for every A-mer in every sequence can be obtained in a pre-processing stage in
O(N) time. The cycle from line 5 through line 18 considers all occurrences of all A-mers in
|S]

each sequence. There are exactly > .~

1 1Si] = A4+ 1 < N such occurrences and therefore the
number of possible pairs of occurrences is O(N?), which corresponds to the number of times
the cycle will be invoked. Each operation in the cycle can be performed in O(1) considering
that ¢ is fixed and that the sets Conf; can be implemented using two arrays of size |S;| (one
for negative and another for positive values of d). The cycle from line 19 through line 21 is

invoked at most Zli|1(|51| —A+1)2 < N2 times since there can be no more than (|.S;| —A+1)?
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Algorithm 1 Computes the e-tolerant matrix of co-occurrences

1. for all m,,ms € L(S) do

2:

3:

4:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

MaxScore < 0
for all S; € S do
Conf; — 0
for all ¢, € Occ;(m,), cs € Occi(my) do
d<«— ¢ — Cg
if d # 0 then
Conf; < Conf; U {(m,, ms,d)}
for k=1toedo
if d+ k # 0 then
Conf; «— Conf; U (m,, ms,d + k)
end if
if d— & # 0 then
Conf; «— Conf; U (m,, ms,d — k)
end if
end for
end if
end for
for all (m,, ms,d) € Conf; do
Score[(m,, ms, d)] < Score[(m,., ms,d)] + 1
end for
end for
for all (m,, ms,d) € |J; Conf; do
if Score[(m,, ms,d)] > MaxScore then
MaxScore « Score[(m;, ms, d)]
end if
end for

M]r, s] < MaxScore

29: end for
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Complex motif: TTGCAnsTATTA
Configurations of 4-mers: (TTGC,TGCA,1) (TGCA,TTGC,-1)
(TTGC,TATT,6)  (TATT,TTGC,-6)
(TTGC,ATTA,7)  (ATTA,TTGC,-7)
(TGCA,TATT,5)  (TATT,TGCA,-5)
(TGCA,ATTA,6)  (ATTA,TGCA,-6)
(TATT,ATTA,1)  (ATTA,TATT, 1)

Figure 4.3: Configurations of 4-mers induced by the presence of a complex motif

configurations of pairs of A-mers in a sequence. The same can be said for the cycle from line
23 through line 27. This yields a time complexity of O(N + N2 + N? + N?) = O(N?). In
terms of space, the lists of occurrences of A-mers combined will take O(NN) space. The same
can be said of the arrays implementing the Conf; sets. Similarly, the Score attribute of each
configuration can be implemented with a pair of arrays, taking O(N) space for each pair of
A-mers. Since these arrays can be re-used for each pair, they will take no more than O(N)
space. The matrix itself requires O(|L(S)|? < |%|?") space. The total space requirements are
therefore in O(N + |S|2V).

4.2 Biclustering approach

As we have said, the matrix of co-occurrences gives us a view, for each pair of A-mers, of the
abundance of its most common configuration (or configurations). The next step is to try to
combine these configurations to form larger patterns, possibly complex motifs. In doing so,
we are guided by the score values computed during the construction of the matrix.

Consider the example in Fig. 4.3. The presence of a complex motif with two components
of length 5 each separated by a distance of 5 nucleotides induces 12 configurations of pairs of 4
different 4-mers. Let us suppose that this complex motif is present in exactly 8 different input
sequences. The score of each of these configurations is therefore no lower than 8. Admitting
that none of these configurations occur in other input sequences, Fig. 4.4 represents a sub-
matrix of the matrix of co-occurrences that would be generated.

This example illustrates the basic principle of our approach to the inference of complex
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< |p|<|©
BB | o
B <|O|E
< |B|B|B
ATTA | 0| 8| 8|8
TATT | 8| 0| 8| 8
TGCA | 8 | 8 | 0| 8
TIGC | 8 | 8 | 8 | 0

Figure 4.4: Sub-matrix induced by TTGCAnsTATTA, assuming that it occurs in 8 input sequences

motifs using the matrix of co-occurrences. However, what we set out to do is the reverse of
the reasoning shown in this example, i.e., we want to identify certain patterns in the matrix
of co-occurrences that could indicate the presence of a complex motif.

We begin by characterizing the patterns we are looking for.

Definition 4.8 (Diagonally-punctured bicluster in a matrix of co-occurrences) A diagonally-
punctured bicluster, B(I,A), in a matriz of co-occurrences M is a sub-set of the elements a;;

of M described by a pair (I,\), with A C I, and defined as:

B(I,A) :{CLZ]Z#],Z el je I}U{GZZZGA}
with i,7 =1,...,|L(S)|.

A diagonally-punctured bicluster in a matrix of co-occurrences is, therefore, an object that
roughly corresponds to a square sub-matrix of M except that the elements in the diagonal
have an optional membership.

This is an unconventional type of bicluster for two reasons. Firstly, the columns that
belong to the bicluster are entirely defined by the indices of the rows (and vice-versa) and,
secondly, the diagonal elements are not necessarily included in the set of elements of the
bicluster. This is, arguably, not a bicluster at all but since we lack a more appropriate term

we will still call it a bicluster bearing in mind its special characteristics.

Definition 4.9 (h-valid diagonally-punctured bicluster in a matrix of co-occurrences)
An h-valid diagonally-punctured bicluster, B(I,A), in a matriz of co-occurrences M is a

diagonally-punctured bicluster such that a;; > h for every a;; € B(I,A).
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The sub-matrix of Fig. 4.4 illustrates this concept. We can think of it as a diagonally-
punctured bicluster where I corresponds to the set of indices of the 4-mers ATTA, TATT, TGCA
and TTGC, and where A = (). If this is the case, we are in the presence of an 8-valid diagonally-

punctured bicluster.

Definition 4.10 (Cut of height i in a matrix of co-occurrences) A cut of height h in

a matriz of co-occurrences, M, Cp(M) is a set of its elements defined as:
Ch(./\/l) = {aij Qi = h}
with 1,7 =1,...,|L(S)|.

The notion of cut in a matrix of co-occurrences will be useful later. At this point it
is only worth noting that all h-valid diagonally-punctured biclusters have their elements in
U, aim).

Let us recall that we are looking for patterns in the matrix of co-occurrences that can
indicate the presence of a complex motif. We are interested in identifying diagonally-punctured
biclusters that include as many elements of the matrix as possible and are h-valid for the
highest value of h attainable. Such a bicluster would hopefully signal the presence of a complex
motif in as many as h different input sequences. As we have remarked earlier, a simple motif
is just a particular case of a complex motif and a diagonally-punctured bicluster could, in
fact, indicate the presence of a simple motif of length greater than A. For instance, the motif
AAATT induces the following configurations of 4-mers? : (AAAT, AATT, 1) and (AATT,AAAT, —1),
which would correspond to a diagonally-punctured bicluster in the matrix of co-occurrences
(provided the motif was frequent enough across the input sequences).

This approach thinks of complex motifs (and simple motifs) as compositions of configura-
tions of A-mers that will be shown in the matrix of co-occurrences in the form of diagonally-
punctured biclusters. However, since we consider only the most common configurations of
pairs of A-mers some information can be lost. In addition, the input sequences can contain
many complex motifs that will in turn induce many configurations of A-mers, possibly in-

terfering with the configurations induced by other complex motifs. It is important, then, to

2Tt also induces 6 configurations of 3-mers, 12 configurations of 2-mers, etc. The impact of the choice of

the value of \ will be discussed later.
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systematize what we can and what we cannot hope to find in searching for biclusters in the

matrix of co-occurrences.

Firstly, we should note that this method is unable to identify simple motifs of length A or
shorter. This is due to the fact that the matrix of co-occurrences only considers configurations
of pairs of A-mers, (m,,ms,d). All simple motifs that can be identified are (A 4+ d)-mers.

Likewise, complex motifs whose components are shorter than A\ will not be identified.

Secondly, motifs composed of A-mers which repeat more than twice will induce multiple
configurations of the same pair of A-mers with identical scores. Consider, for example, the
motif AAATTTn3AATTAAT and suppose we choose A = 3. This motif will induce many configura-
tions of 3-mers, including (AAT, AAT, 8), (AAT,AAT, 12) and (AAT, AAT,4). These configurations
will have the same score and will be represented in the matrix of co-occurrences by a single
element in the main diagonal. Furthermore, the configurations (AAT,ATT, 1) and (AAT, ATT,9)
will also be induced and will be represented by the same pair of elements in the matrix of
co-occurrences. This is not a problem, in principle, for it is still possible to infer the structure
of the complex motif from these configurations. But the smaller the value we choose for A the
more likely it is that configurations of A-mers unrelated with the complex motif be included in
the bicluster. For instance, if the motif AATAAT is at least as common as the complex motif we
are considering, then, the configurations it induces will pollute those induced by the complex

motif and will effectively undermine our ability to infer the structure of the complex motif.

Finally, an interesting motif could fall short from being identified. This can happen if
another motif composed by the same set of A-mers (or a superset) is more frequent. Consider
the complex motif we discussed above and let A = 3. If the motif ATTTn3TAAT is a different
binding site but present in less sequences than AAATTTn3AATTAAT then it will be undetectable
for the configurations it induces will not be most common configurations of the 3-mers that
compose it. It is worth noting that if it occurred in more sequences than the previous motif it
would have compromised our ability to reconstruct it from the configurations it induces since
some would have been superseded by those with a higher score. If it occurred in exactly the
same number of sequences it would result in a merger of the sets of most common configurations

induced by each motif which would likewise make the task of inferring the motifs much harder.

This illustrates the fact that the choice of A is critical. If it is too large it may miss smaller

motifs and if it is too small it will render our method vulnerable to spurious configurations
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interfering with interesting motifs or similar motifs interfering with each other. These short-
comings of our approach, albeit numerous, concern situations which are very unlikely for an
appropriate choice of A\ and are here presented for the sake of a thorough discussion.

It may happen, however, that by chance several unrelated configurations of pairs of \-
mers have identical scores and end up being grouped to form a bicluster. These false positives
may be detected by considering each contributing configuration because it is unlikely that the
distance values are compatible in the sense that they cannot be combined to form a motif.
An easier way to detect these spurious biclusters would be to keep, for each configuration,
information about which sequences it occurred in. This would allow us to determine that
these configurations were occurring in different sets of sequences and were therefore unrelated.

If two motifs share co-occurring pairs of A-mers regardless of whether they concern the
same configurations or not, then the score of the matrix element representing the shared pair
will take the value corresponding to the most frequent motif across input sequences, i.e., the

score of the most common configuration. This gives us our particular plaid model:

a;; = max Opp;ir
1] k=1 K plj

where ¢, represents the contribution of the kth bicluster to the value of a;; and p;j, is
a binary value representing the membership of the element a;; to the kth bicluster. If the
interference refers to different configurations then we may not be able to reconstruct the less
frequent motif. However, if it refers to the same configuration we can identify both.

This gives us the right cue for the algorithm we propose. Algorithm 2 begins by considering
the matrix of co-occurrences, M3, starting with the elements in Cp (M%) with the highest
score, h. Since this matrix is symmetrical, our starting point is either an element on the main
diagonal or a pair of elements from the upper and lower triangle respectively. In either case,
it is a diagonally-punctured bicluster. For each of these biclusters we will then greedily add
rows/columns as long as the corresponding elements have a score not lower then the score of
our initial elements. The same is performed for the diagonal elements. Elements which have
already been included in a bicluster are not used as a starting point for ulterior biclusters.
This way we are effectively seeking biclusters with high scores which include as many matrix
elements as possible. By allowing initial biclusters to include elements with a higher score than

the score of the original elements we are addressing the observation we made while discussing
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our plaid model. This can be translated in the fact that a configuration which occurs in
h input sequences will a fortiori also occur in A’ < h input sequences. The algorithm will
continue considering elements with decreasing scores until a minimum score is reached, below

which any bicluster is deemed insufficiently common to be of interest.

The algorithm will consider at most |L(S)|? < |2|> matrix elements as the starting point
and to each of these initial biclusters will add at most |L(S)| < |Z|* rows/columns. At
each tentative addition of rows/columns it will have to check whether the resulting bicluster
is h-valid resulting in at most |L(S)|> < |2|*} comparisons. This yields a time complexity
of O(|X|*"). However, the larger the biclusters the less matrix elements will be used as a
starting point, so this bound is not tight. Determining a tighter bound is quite difficult since
the relation between the average size of the biclusters and the number of initial elements
considered is not easily established due to the fact that different biclusters can effectively

share many matrix elements.

Algorithm 2 is a heuristic approach to our problem in the sense that it misses an undefined
part of the solution. In effect, it can determine at most |L(S)|? different biclusters. There

[L(S)] . .
are, however, as many as 3~ 3  possible biclusters, as we shall see.

Consider a matrix of co-occurrences and another matrix with the same size. Each element
of this new matrix holds the value 1 if the corresponding score in the matrix of co-occurrences
is not below h and 0 otherwise. This binary matrix can be seen as a graph G = (V, E). Each
row/column is a vertex and each pair of vertices is connected by an edge if the corresponding
element in the binary matrix has the value 1. We can effectively ignore the values held by the
main diagonal for this discussion. Searching for all largest diagonally-punctured biclusters in
this binary matrix is the same as searching for all maximal cliques in the corresponding graph.
This problem is known to be NP-hard and there can be as many as 3% maximal cliques in a
graph [56].

Our algorithm is, therefore, trying to solve the equivalent to the problem of enumerating all
maximal cliques for each score h it considers. In fact, we do not actually require the biclusters
to be maximal and since the binary matrix for each score h tends to be sparse the number of

maximum size biclusters is likely to be much smaller than the theoretical maximum.

Once we have identified the diagonally-punctured biclusters of interest we can then try

to reconstruct the motif that induced the configurations we have grouped. To that effect,
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Algorithm 2 Extracts biclusters in a matrix of co-occurrences

1: for h =t to minscore do
2:  biclustersy, < 0

3. for all a;; € Cp(M) do

4 if a;; ¢ UBkebiclustersh By, then

5: if ¢ = j then

6: I —{i}

7 A — {i}

8: else

0 I {i,j}

10: A—10

11 end if

12: for k =1 to |L(S)| do

13: if B(IU{k},A) is h-valid then
14: I —TU{k}

15: if B(I, AU{k}) is h-valid then
16: A —AU{k}

17: end if

18: end if

19: end for

20: biclustersy, «— biclusters, U {B(I,A)}
21: end if

22: end for

23: end for
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we need to have previously taken note of the possibly multiple most common configurations
associated with each element in the matrix of co-occurrences. These configurations can easily
be assembled to reconstruct the original motif unless they have been polluted by configurations
induced by other motifs as we have already discussed. For small biclusters this assembly can
be done by inspection. A general method of assembly is left for future work. However, as a
first approach we can think of a weighted multi-graph whose vertices correspond to the A-mers
participating in the bicluster and whose edges are labeled with the relative distances between
each pair of A-mers as indicated by the most common configurations in each matrix element
grouped in the bicluster under consideration. A traversal of this graph will purportedly be
able to perform the assembly of the original motif.

In this chapter we described a new method that can effectively guide the parameter speci-
fication for modern motif finders by estimating the number of components and the component
length for complex motifs (and simple motifs, which are a particular case). It cannot, how-
ever, give a reliable indication of the number of sequences in which the reconstructed motifs
occur in. An h-valid bicluster is simply a bicluster whose elements, i.e., whose configurations
of A-mers occur in no less than h input sequences. We keep no information about which
sequences they actually occur in so we cannot confidently say that they all refer to the same
set of sequences. For this reason, and for the fact that it is, in effect, simply an heuristic
approach it cannot compete with motif finders. It can, instead, be used as a tool to capture
the characteristics of the input sequences and collect evidence of the presence of interesting
motifs which could otherwise go unnoticed.

In the next chapter we present the results of the application of this method to both

synthetic and biological data sets.



Chapter 5

Results

In this chapter we present and discuss the result of applying the method proposed in this thesis
to several data sets. The method was applied to both artificially generated (synthetic) data
sets and to a real data set. The advantage of using synthetic data sets is the ability to specify
exactly which motifs we wish to plant in the data against a random background. This way we
can safely test our method since we control every aspect of the signal hidden in the random
sequences. However, synthetic data sets are still very different from real sequences in the
sense that these cannot be accurately modeled as motifs with a role in transcription regulation
surrounded by meaningless nucleotides. Regulatory regions are the result of the interference of
various signals which are important for different processes. The distribution of nucleotides in
these regions is not random since it is influenced by many factors like the evolutionary history
of the species. Other restrictions come from the very nature of these regions which need to
be easily accessed by the transcription initiation complex and are therefore usually richer in
A-T content (A-T bonds are weaker than C-G bonds). It is, therefore, important to test our
method with real data. To this effect we chose to apply it to a well characterized data set [57]

for which a binding site has been determined with high confidence.

5.1 Synthetic Data

The synthetic data sets that we will describe in this section were produced using a simple
random generator based on ran2 [58|. Each data set, unless otherwise indicated, consists of

100 sequences of length 600. The length was chosen to be 600 to conform to the average length

41
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of the sequences that will be used in the analysis of real data.

There are two important parameters in our method: A\ which defines the length of our
A-mers and € which defines the tolerance with which we score configurations of A-mers. Re-
call that the e-tolerant score of a configuration, (m,, ms,d), considers the contribution of all
configurations (m,, ms,d’) such that d’' € [d —¢e,d + ¢€].

We did not consider the cases where A\ < 2 because, as we mentioned in the previous
chapter, this will increase the number of most common configurations in each element of the
matrix of co-occurrences making the task of identifying motifs harder. The cases in which
A > 4 have two inconvenients. Not only the generated matrix is exceedingly large but we
will also be unable to identify complex motifs with components shorter than 5 nucleotides or
simple motifs less than 6 nucleotides long. Our results will, therefore, only show the cases
where A = 3 and A = 4. We will also only consider the cases where ¢ = 0 and € = 1 since
larger values for our tolerance will inflate the score of most configurations. In any case, we do
not discard the interest of performing a broader study.

Recall that Algorithm 2, which identifies diagonally-punctured biclusters also uses the
parameter minscore referring to the minimum score required for each element of a bicluster
to allow it to be identified. In every analysis performed in this chapter we have considered
minscore = 10.

In the following discussion we will refer to score levels or simply levels to talk about
features which become apparent when looking at elements in the matrix of co-occurrences
with a given score. Therefore, when we refer to all elements at level A we are referring to all
elements in the matrix of co-occurrences, M, with score h or, equivalently, to all elements
in Cp(M). Similarly, when we refer to biclusters identified at level h we mean all biclusters

whose elements with least score are at level h (h-valid biclusters).

5.1.1 No planted motifs

The first step in this analysis is to characterize the noise. That is, we want to characterize the
output of our method when applied to random sequences with no planted motifs. This gives
us a baseline with which to compare results.

In Fig. 5.1 we can see the superposition of the distribution of the scores of configurations

(matrix elements) from three different random data sets with no planted motifs. We can
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distinguish three local maxima in the graph: one around level 90, another close to level 45
and yet another slightly above level 25. We argue that the maximum at the highest level

corresponds to the number of expected occurrences of motifs of length 4 in a data set with

1

= 555+ In a sequence of

these characteristics. Each motif of length 4 has a probability of (i)4
length 600 it has many opportunities to occur. A naive approach would indicate that given
a probability of ﬁ and 600 — 4 + 1 = 597 opportunities of occurrence one would expect
2.33 occurrences of motifs of length 4 in every sequence, yielding a score of 100 for each
corresponding configuration. However, this approach ignores the fact that not all motifs can
be overlapped (thus not having those many opportunities of occurrence). The true expected
number of occurrences is surely below 2.33. So we would expect our local maximum to be
somewhere close to but below 100. The same reasoning can be applied to motifs of length
5 yielding an expected number of occurrences close to 0.58 and could, therefore, explain the
second local maximum. This local maximum is higher simply because more elements of the
matrix are required to compose a motif of length 5 than a motif of length 4. The remaining
local maximum is simply the combination of the expected number of occurrences for less likely
patterns. It is also worth noting that the height of the maxima at lower levels depends on the
height of the maxima at higher levels. This is due to the fact that the score of a configuration

refers only to a most common configuration. Therefore, if a matrix element is commited to

represent a motif it cannot be used to represent a less likely motif.

Using this model we can predict the shape of a similar plot for data sets with varying
sequence length. For a data set with longer sequences we expect the maximum referring to
motifs of length 4 to be higher and closer to level 100 reflecting both the increased number
of matrix elements commited to represent these motifs and the greater likelihood of their
occurrence in input sequences. In a data set with shorter sequences we expect all maxima
to be at lower levels and to be closer to one another. Fig. 5.2 shows the number of matrix
elements per score level of a data set with no planted motifs and with sequences of length

2000. Fig. 5.3 shows the same but for a data set with sequences of length 100.

Another interesting plot is the number of identified biclusters per score level. Fig. 5.4
shows this information for the data sets analyzed in Fig. 5.1. Both plots have a similar shape
showing that the number of biclusters for a given score level is, in this case, highly correlated

with the number of matrix elements with the same score. This is not suprising, especially if
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Elements per Score Level

Number of Elements
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Figure 5.1: Number of Elements per Score Level in 3 synthetic data sets without planted

motifs (A = 3,2 = 0,|S| = 100,|S;| = 600)
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Figure 5.2: Number of Elements per Score Level in a synthetic data set without planted motifs

(A= 3,e =0,|S| = 100, |S;| = 2000)

the identified biclusters have a low number of elements. Let us define the volume of a bicluster,
B(I,A), as the number of matrix elements covered by B(I,A). Fig. 5.5 shows the average

Y

volume of biclusters per score level for the same data sets. We can see that the average volume
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Figure 5.3: Number of Elements per Score Level in a synthetic data set without planted motifs

(A=3,c=0,|S| = 100, |S;| = 100)

of biclusters is very low (below 8, but mostly around 1-2) down until around score level 60.
Below this point many spurious biclusters are identified and below level 20 they cover almost

the entirety of the co-occurrence matrix.

Biclusters per Score Level

100
1

Number of Biclusters

20 40 60 80 100

Figure 5.4: Number of Biclusters per Score Level in 3 synthetic data sets without planted
motifs (A = 3, = 0,|S| = 100, |S;| = 600)
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Figure 5.5: Average Bicluster Volume per Score Level in 3 synthetic data sets without planted

motifs (A = 3,2 = 0,|S| = 100,|S;| = 600)

These results show that if we planted a motif in these data sets and made it occur in less
than 20 input sequences it would be indistinguishable from the noise. The same, however,
does not happen if we analyze the same data sets but having A\ = 4. In Fig. 5.6 we present
the results for this analysis.

By using A = 4 our method becomes oblivious to motifs of length 4 which explains the
disappearance of the corresponding local maximum in the number of elements per score level
plot. The overall magnitude of the noise is also greatly decreased (note that the co-occurrence
matrix in this case has 65536 elements, compared to the 4096 elements in the case where
A = 3). The highest scoring most common configuration is now down to a much lower level
(level 62) and the average bicluster volume increases with decreasing score levels with a much
gentler slope.

It is clear that a higher tolerance level will increase the noise in any data set. The only
reason why our method considers using tolerance at all is the fact that in some cases it may
increase the signal more efficiently than the noise. The only question at this point is how
much increase in noise is one to expect. Fig. 5.7 gives us an idea of the impact of considering
€ = 1 for the same three data sets considered so far, maintaining A = 4.

We can see a significant increase in noise magnitude, especially for lower score levels. We
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Figure 5.6: Number of Elements, Number of Biclusters and Average Bicluster Volume per Score

Level in 3 synthetic data sets without planted motifs (A = 4,e = 0,|S| = 100, | S;| = 600)

should, therefore, be conservative in using tolerant scores.

5.1.2 Planted Motifs

We will now address the case where we plant motifs in the input sequences. As we mentioned
earlier, all data sets have 100 sequences with 600 nucleotides. Tab. 5.1 summarizes the cases
we shall consider, indicating which motifs were planted and the percentage of input sequences
containing the planted motifs. The motifs were planted only once in each of the randomly

selected input sequences.

For each case we indicate what is to be expected and we present a general description of

the output of our method. In all cases only parameters A = 4 and € = 0 are used.
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Figure 5.7: Number of Elements, Number of Biclusters and Average Bicluster Volume per Score

Level in 3 synthetic data sets without planted motifs (A = 4,e = 1,|S| = 100, | S;| = 600)

Case Motif(s) % of Input Sequences

A AAAAA 80%
B AAAANSTTTT 80%
C AAAATnNoGTTTTA 80%
D AAAATN5TTTTAR5CCCCT 80%

AAAAA 40%
E AAAATNoGTTTTA 30%

AAAATN5TTTTAR5CCCCT 30%

Table 5.1: Motifs planted in synthetic data sets and the percentage of sequences containing

them for cases A, B, C, D and E
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Case A

In this case we have planted the motif AAAAA which generates the following configurations:
(AAAA,AAAA 1) and (AAAA,AAAA, —1). These configurations are associated with a single diag-
onal element in the matrix of co-occurrences (once they prove to be most common config-
urations). We expect to extract the bicluster B({i},{i}) where i is the index of the 4-mer
AAAA.

Fig. 5.8 shows the relevant results of the application of our method to case A. The plots
are almost identical to the ones obtained for the random data sets with no planted motifs,
shown in Fig. 5.6. The difference lies in the fact that biclusters were found above score level
62 and the existence of some small perturbations around level 60. The introduction of our
motif in the otherwise random sequences changes the proportion of nucleotides and, therefore,
the likelihood of occurrence of some motifs. Tab. 5.2 shows the top 5 scoring motifs identified

with our method. The assembly of the motifs from the identified biclusters was performed by

inspection.
+# Motif | Score
1 AAAAA 85
2 TGAAA 64
3 AAAAG 63
4 GAAAA 62
) AAAAC 61
4271

Table 5.2: Top scoring motifs inferred from the top scoring biclusters for case A

As expected, the top scoring motif is the one which was planted. The following motifs
have clearly benefited from the increased proportion of A’s in the data set but still score
significantly less than the planted motif and not much higher than the top scoring motif found
in data sets with no planted motifs. It is also interesting to note that the planted motif scores
higher than what is warranted by the number of sequences in which it was planted. This is

also not surprising since the motif in itself is very likely to occur in a random sequence of
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Figure 5.8: Number of Elements, Number of Biclusters and Average Bicluster Volume per

Score Level for case A (A =4, =0,|S| = 100, |S;| = 600)

the specified length. The planted occurrences and the spurious occurrences have combined to

yield a score of 85.

Case B

In this case we have planted the motif AAAAnsTTTT. It generates the following configurations:
(AAAA, TTTT, 8) and (TTTT,AAAA, —8). Fig. 5.9 summarizes the results obtained for this case.
The plots shown for this case are quite similar to those obtained in the previous case,
as expected. Likewise, the top scoring motif is expected to be the planted motif and the
following are likely to be simple motifs derived from the two components of the complex motif
that was placed in 80 of the input sequences. Tab. 5.3 shows the top scoring motifs, confirming

our predictions. Unlike the previous case, the score of the planted motif was not inflated by
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Figure 5.9: Number of Elements, Number of Biclusters and Average Bicluster Volume per

Score Level for case B (A =4,e =0, S| = 100, |S;| = 600)

pre-existing occurrences in the random sequences. This is due to the fact that a motif with
non-contiguous components is very unlikely to occur by chance, as we have mentioned in

previous chapters.

Case C

The planted motif for case C is AAAATno TTTTA, which generates the following set of configu-
rations: (AAAA, AAAT, 1), (AAAT,AAAA, —1), (TTTT, TTTA, 1), (TTTA, TTTT, —1), (AAAA, TTTT, 24),

Y

(TTTT, AAAT, —24), (AAAA, TTTA, 25), (TTTA, AAAA, —25), (AAAT, TTTT, 23), (TTTT, AAAT, —23),
(AAAT, TTTA, 24) and (TTTA, AAAT, —24). Fig. 5.10 shows the plots obtained for this case. It is
interesting to note the peak on the plot of the average bicluster volume per score level that

appears at level 80. There is only one bicluster at this level and it refers to the planted motif



52 CHAPTER 5. RESULTS

# Motif Score

1 AAAANSTTTT 80

2 TTTTC 64

3 AAAAC 63

4 CAAAA 63

5 AAAAT 62
4272

Table 5.3: Top scoring motifs inferred from the top scoring biclusters for case B

# Motif Score

1 AAAAT 90

2 TTTTA 90

3 AAAATRooTTTTA | 80

4 GAAAA 65

) AAATG 63
4291

Table 5.4: Top scoring motifs inferred from the top scoring biclusters for case C

which induces a bicluster of volume 12 (corresponding to the number of configurations listed
above).

Contrarily to previous cases, the top scoring motif is not the planted motif, as shown in
Tab. 5.4. Each component of the planted complex motif has combined with random occur-

rences of identical 5-mers to obtain a score higher than that of the planted motif.

Case D

In case D, a complex motif with three components was planted in the input sequences:
AAAATNnsTTTTAnsCCCCT. This motif generates as many as 30 configurations of pairs of 4-

mers. Fig. 5.11 shows the relevant information for this case. Just like in case C, the planted
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Figure 5.10: Number of Elements, Number of Biclusters and Average Bicluster Volume per

Score Level for case C (A =4, =0, |S| = 100, |S;| = 600)

motif is listed among the top scoring motifs, as can be seen in Tab. 5.5 and each component

scores higher than the planted motif due to the contribution of spurious occurrences.

Case E

This case is more interesting because the motifs planted in cases B, C and D have all been
planted in this data set. Furthermore, each of these motifs was planted in much less input
sequences. Fig. 5.12 summarizes the results for case E. These plots are unsurprisingly much
different from the ones shown in the previous cases, showing a peak around score level 30 for
the average bicluster volume plot.

Tab. 5.6 shows a portion of the list of motifs inferred from the identified biclusters. The top

scoring motifs are the result of the contribution of components of the planted complex motifs
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Figure 5.11: Number of Elements, Number of Biclusters and Average Bicluster Volume per

Score Level for case D (A = 4,¢ = 0,|S| = 100, |S;| = 600)

# Motif Score

1 AAAAT 90

2 CCCCT 89

3 TTTTA 86

4 AAAATnsTTTTANsCCCCT 80

5} ACCCC 66
4296

Table 5.5: Top scoring motifs inferred from the top scoring biclusters for case D
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Figure 5.12: Number of Elements, Number of Biclusters and Average Bicluster Volume per

Score Level for case E (A =4,¢ =0, S| = 100, |S;| = 600)

with spurious occurrences, not unlike we have seen in previous cases. What is interesting
to observe are the results concerning the planted motifs. The simple motif that was planted
(AAAAA) was not recovered in isolation. Instead, it appears merged with spurious occurrences
of other configurations. This is not surprising since we planted the simple motif in only a
few sequences (40), much less than the score level below which many spurious occurrences of

5-mers start to be common, which is around score level 55, as shown in Fig. 5.6.

Motifs listed in ranks 1010 through 1015 were the only complex motifs recovered by our
method. They all resemble the planted complex motifs but none matches any of them exactly.
This is, once again, not surprising. If we inspect motif in rank 1015 it is almost an exact
superposition of the two complex motifs that were planted in the input sequences. All the

other motifs are simply subsets of the configurations induced by our complex motifs. The
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# Motif Score

1 AAAAT 75

2 TTTTA 75

3 AAAAAT 70

4 AAAAAC 66

5) CAAAA 63
1010 AAATnsTTTT 32
1011 AAAATR5TTTTngCCCC 31
1012 AAAANGTTTTngCCCCT 31
1013 AAAATRSTTTTAR TTTA 31
1014 AAAANGTTTTANgCCCTN  TTTA 31
1015 AAAATRSTTTTARsCCCCTn, TTTA | 30
4260

Table 5.6: Top scoring motifs inferred from the top scoring biclusters for case E

explanation for this result is straightforward. The two complex motifs that were planted
in the data set were quite similar and induced almost identical configurations, except for
those referring to the pairs (AAAA, TTTT), (AAAA, TTTA), (AAAT, TTTT) and (AAAT, TTTA) which
differed in their relative distances. A spurious occurrence of one of these configurations in
one of the input sequences was sufficient to deprive the other of its status of most common
configuration. In this case, configurations (AAAA, TTTT, 24), (TTTT, AAAA, —24), (AAAT, TTTT, 23)
and (TTTT, AAAT, —23) were the ones which got discarded making it impossible to fully recover
the planted motif AAAATnogTTTTA. On the other hand, the other complex motif was fully
recovered. The motif that is listed in rank 1015 was inferred by inspection of the identified

bicluster and what is shown does not convey all the information that the bicluster offers.

It is true that many configurations that pertain to motif AAAATnooTTTTA are interwined
with those generated by AAAATn;TTTTAn5;CCCCT but it is still possible to discriminate between

the two. We decided to present the reconstructed motif in this way because both configurations
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(AAAA,TTTA, 10) and (AAAA, TTTT, 25) are associated with the bicluster, but, for instance, there
is only a pair of configurations involving 4-mers TTTA and CCCC which are the ones induced
by AAAATnsTTTTAnsCCCCT. This allows us to suspect that different signals have combined in
this bicluster and we can, in this case, easily distinguish the two.

This case has illustrated some of the more complex situations that we can face using the
proposed method. It is, however, a very artificial situation because the planted motifs are
quite similar. These situations are unlikely to occur with real data sets if one chooses an

appropriate value for \.

5.2 Biological Data

As we said previously, synthetic data sets are convenient for controlled tests but they fall short
of being a reliable model of regulatory regions. In this section we present the results of the
application of our method to a real data set |57]. This data set is composed of various o®4-
dependent promoter sequences of Escherichia coli. The data set is composed of 69 sequences
with an average length of 580 nucleotides.

We begin by analyzing the plots obtained for the number of elements, biclusters and
average bicluster volume per score level by applying our method using A = 4 and € = 0 shown
in Fig. 5.13. These plots are significantly different from the ones obtained for the synthetic
data. There are no distinguishable local maxima which suggests that these sequences are not
random as we have already argued.

In Tab. 5.7 we list a portion of the list of motifs assembled by inspection of the identified
biclusters. The complex motifs that are listed consist of the only complex motifs identified
above score level 20. In [57| a consensus sequence for the promoter of these sequences was
obtained by a combination of genetic evidence and putative promoters reported in the lit-
erature based on sequence similarity. The consensus sequence reported by the authors was:
NNNNmrNrYTGGCACGNNNNTTGCWNNwNNNNN where R stands for purines, Y for pyrimidines, W for A
or T and, as usual, N stands for any nucleotide.

The complex motifs obtained using our method are in absolute accordance with the con-
sensus sequences reported by the authors.

As we discussed in previous chapters, our method is not guaranteed to find all interesting

motifs due to its heuristic nature and is also vulnerable to reporting false positives. It should,
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Figure 5.13: Number of Elements, Number of Biclusters and Average Bicluster Volume per

Score Level for the 05 data set (A =4, = 0, |S| = 69, average|S;| = 580)

therefore, rely on a motif finder to validate its output. The biclusters identified in this case
suggest the existence of a complex motif with two components separated by a gap of 5-
7 nucleotides. If we use the SMILE algorithm [5] and ask for all complex motifs with a
first component between 4 and 6 nucleotides long and a second component between 4 and 5
nucleotides long separated by a gap between 5 and 7 nucleotides long occurring in at least 20

sequences the algorithm reports one motif only:
TGGC TTGCT

This suggests that our method is artificially inflating the scores of the biclusters because it
does not perform a cross-check of the sequences in which each configuration occurs. If we lower
the number of sequences we require the motif to occur in we recover all the motifs reported

by our method (not shown).
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# Motif Score
1 CTGGC 54
2 TGGCA 23
3 GGCAC 49
4 TTGCT 42
5} CCCGC 40
40 TGGCn, TTGC 35

125 TGGCAngTTGC 30

270 TGGCAngTTGCT 25

237 GGCACnsTTGC 20

1887

Table 5.7: Top scoring motifs inferred from the top scoring biclusters for the o> data set

Other algorithms, like MEME [23], are, in principle, able to find interesting features in
data sets. We have used MEME to analyze this data set. A common way to present results
reported by MEME is a multi-level consensus sequence. The nucleotides in the top row are
the most likely for each position, and nucleotides at lower rows are decreasingly probable. The

multi-level consensus sequences obtained with MEME for the 0®* data set was the following:

¢G ¢ T G G CcC A CG G CTCTTG C T
T T T A C G C G C A

The multi-level consensus sequence reported by MEME is in accordance with both the
documented consensus sequence and the motifs extracted using the method proposed in this
thesis. It is not so clear, however, in elucidating the complex structure of the motif which is

the main goal of our approach.
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Chapter 6

Conclusions and Future Work

In this thesis we have presented an effective method to guide modern combinatorial motif
finders. We have seen that, up to a point, our method is capable of reporting the relevant
motifs by itself. We have demonstrated this ability in the results presented in chapter 5.

We have already discussed the shortcomings of our approach which refer to situations
where the method is unable to detect all the important configurations necessary to assemble
a motif present in the input sequences. We argue that most of these situations are unlikely
to occur in practice and that this method stands as a useful practical tool to guide the search
for motifs, especially those exhibiting a complex nature.

Notwithstanding the fact that most of the biclusters identified by our method suggest
the presence of motifs which can easily be assembled by inspection of the configurations
associated with the bicluster elements, we still lack an automated procedure to assemble these
motifs. This is a task that can be challenging in some special cases where multiple motifs
end up grouped in the same bicluster or when some configurations are masked due to signal
interference. It is, however, an interesting and useful procedure that deserves attention.

Another issue is the ability to accurately predict the exact number of input sequences
where the configurations grouped in a bicluster simultaneously occur. As we have discussed
in previous chapters the score level at which a bicluster is identified is an upper bound of
the simultaneous occurrences of all associated configurations. Reporting the exact number of
sequences involves keeping track of which input sequences each configuration occurs in. This
improvement would also be useful to detect and discard spurious biclusters that result from

grouping configurations that never occur in the same input sequences.

61
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Another important improvement to our method would be offering support for degenerate
motifs, i.e., the ability to cope with nucleotide substitutions as is the case with many modern
motif finders. This is not a trivial matter and involves, besides redefining most of the concepts
introduced in chapter 4, considering not only co-occurrences of pairs of A-mers present in the
input sequences but also those of \-mers at some pre-defined Hamming distance of the former.

We have mentioned in chapter 4 that the number of biclusters that our biclustering al-
gorithm is able to identify (|L(S)|?) is much less than the theoretical maximum number of

[L(S)|
biclusters (373 ). This is due to the fact that the algorithm performs a greedy search, missing

an undetermined part of the solution. We have argued that this can be mitigated by the fact
that, in practice, the generated matrix of co-occurrences is sparse at each level considered. It
would be interesting, however, to compare the results obtained using this algorithm with an-
other performing an exhaustive search. It may prove worthwhile to implement a randomized
version of the algorithm whereby rows/columns would be randomly targeted for addition, in
conjunction with a beam search approach which would combine, at each level, the biclusters
obtained by considering initial biclusters in different orderings.

Finally, it is clear from the results presented in chapter 5 that many of the identified
biclusters are due to random occurrences of short simple motifs. A user of our method would
greatly benefit from a statistical significance assessment of the reported biclusters. Despite
the fact that listing the biclusters by decreasing score values already constitutes a significant
help in discriminating the output it is insufficient to isolate interesting motifs occurring in few

input sequences.
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