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Abstrat
In this thesis we propose a method to estimate searh parameters for modern ombinatorialmotif �nders, with an emphasis on the identi�ation of omplex motifs. Currently availableombinatorial algorithms have proved to be highly e�ient in exhaustively enumerating mo-tifs whih ful�ll ertain extration riteria. Addressing the problem of identifying omplexmotifs is extremely important, not only beause these motifs an aurately model biologialphenomena but beause its extration is highly dependent upon the appropriate seletion ofnumerous searh parameters.Our method relies on a matrix of o-ourrenes that, for eah pair of small sequenes oflength λ, stores the number of input sequenes in whih the most ommon on�guration ofthese small sequenes ours in. Using bilustering tehniques it is possible to group elementsof the matrix to form larger, possibly omplex, motifs.The proposed approah is not guaranteed to �nd all interesting orrelations in the inputsequenes. However, it allows the e�ient identi�ation of unusual features referring to motifsthat would otherwise require an exhaustive searh in the parameter spae to be extrated.This is partiularly important when searhing for omplex motifs.The experimental results show that this approah an e�etively identify a set of importantmotif features that an guide the spei�ation of searh parameters for modern motif �nders.Keywords: Promoter predition, Combinatorial algorithms, Motif extration, Complex mo-tifs, Bilustering tehniques, Matrix of o-ourrenes
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Resumo
Nesta tese é proposto um método para estimar os parâmetros de pesquisa para os modernosalgoritmos ombinatórios de extração de motivos, om ênfase na identi�ação de motivosomplexos. Os algoritmos ombinatórios disponíveis atualmente demonstraram ser muitoe�ientes na tarefa de identi�ar motivos que umpram determinados ritérios de extração.A abordagem do problema de identi�ar motivos omplexos é de extrema importânia, não sóporque estes motivos são apazes de modelar om exatidão os fenómenos biológios, mas tam-bém pelo fato da sua extração estar muito dependente da seleção adequada de numerososparâmetros de pesquisa.O método proposto utiliza uma matriz de o-oorrênias que, para ada par de pequenassequênias de tamanho λ, guarda o número de sequênias de entrada em que a on�guraçãomais omum destas pequenas sequênias oorre. Utilizando ténias de bilustering é pos-sível agrupar elementos desta matriz por forma a identi�ar motivos maiores, possivelmenteomplexos.A abordagem proposta não garante a identi�ação de todas as orrelações interessantesnas sequênias de entrada. No entanto, possibilita a identi�ação e�iente de padrões pouoomuns que indiam a presença de motivos que de outro modo neessitariam de uma prouraexaustiva no espaço de parâmetros para poderem ser extraídos. Isto é partiularmente impor-tante no ontexto da proura de motivos omplexos.Os resultados experimentais mostram que esta abordagem permite identi�ar e�iente-mente um onjunto de araterístias importantes de motivos que pode ser usado para guiara espei�ação de parâmetros de pesquisa para algoritmos modernos de extração de motivos.Palavras have: Predição de promotores, Algoritmos ombinatórios, Extração de motivos,Motivos omplexos, Ténias de bilustering, Matriz de o-oorrêniasv
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Resumo Alargado
O genoma de um organismo pode ser visto omo uma sequênia de DNA de�nida sobre umalfabeto de quatro nuleótidos Σ = {A,T,G,C}. Algumas regiões desta sequênia orrespon-dem a genes e são, por isso, referidas omo regiões odi�antes. Cada gene odi�a, em regra,uma proteína. As proteínas são polímeros de aminoáidos e estão envolvidas em pratiamentetodas as atividades elulares podendo ter uma função estrutural, onstituíndo, por exemplo,a parede elular, ou uma função atalítia, assumindo o papel de enzimas no metabolismo daélula.O dogma entral da biologia estabelee um perurso para o �uxo de informação genétia:DNA → RNA → proteína. De aordo om este prinípio, o RNA é sintetizado a partirde um molde de DNA através de um proesso designado de transrição e as proteínas sãosintetizadas a partir do RNA num proesso designado de tradução. As moléulas de RNAsão, assim, intermediárias na expressão da informação genétia.Os genes de um organismo não são todos expressos simultaneamente. A sua ativação de-pende das neessidades metabólias da élula e está sujeita a vários meanismos de regulação.Um dos mais importantes meanismos de regulação da expressão dos genes é a regulação aonível da transrição. Este meanismo de regulação é mediado por proteínas designadas defatores de transrição que reonheem espei�amente ertas sequênias de nuleótidos loal-izadas, geralmente, a montante dos genes na sequênia de DNA em regiões denominadas deregiões promotoras. De entre sequênias de nuleótidos reonheidas pelos fatores de tran-srição podemos distinguir sequênias ontíguas designadas de motivos simples e sequêniasinterrompidas por espaçamentos de nuleótidos pouo importantes para a ligação dos fatoresde transrição designadas de motivos omplexos. A identi�ação destes loais de ligação éuma tarefa fundamental na ompreensão dos meanismos de regulação da expressão génia.Até muito reentemente, todos os algoritmos para identi�ar loais de ligação dos fatoresvii



viiide transrição extraíam apenas motivos simples, traduzindo-se na pesquisa de sequênias on-tíguas de nuleótidos (omponentes) omuns a várias regiões promotoras, a menos de algumassubstituições de nuleótidos.Atualmente, a importânia da identi�ação de motivos omplexos é resentemente re-onheida. Existem várias vantagens em privilegiar a pesquisa de motivos omplexos. Por umlado, alguns fatores de transrição têm uma estrutura intrinseamente omplexa no sentidoem que reonheem sequênias não-ontíguas de nuleótidos e, nestes asos, os motivos om-plexos adaptam-se melhor à modelação dos loais de ligação. A ligação ooperativa de váriosfatores de transrição à região promotora também paree envolver o reonheimento de váriassequênias ontíguas de nuleótidos separadas por espaçamentos mais ou menos onstantes.Por outro lado, a imposição de espaçamentos entre sequênias failita a tarefa de distinguirentre motivos biologiamente signi�ativos para o proesso de transrição de motivos queestão presentes nas várias regiões promotoras mas que não são importantes neste ontexto.Adiionalmente, os motivos omplexos podem ser usados para modelar sequênias ontíguasde nuleótidos om regiões entrais pouo onservadas nas várias regiões promotoras.Vários algoritmos atuais de pesquisa de motivos já suportam a extração de motivos om-plexos muito embora om várias limitações. A maior parte onsidera motivos omplexos on-stituídos por duas sequênias ontíguas de nuleótidos om um espaçamento �xo entre si o quelimita severamente o tipo de motivos omplexos passíveis de serem identi�ados. Propostasmais reentes eliminaram a neessidade de onsiderar espaçamentos �xos mas ontinuam apermitir apenas a extração de motivos omplexos om dois omponentes. Adiionalmente,estes algoritmos tendem a ser pouo e�ientes porque ou enumeram todos os motivos om-plexos possíveis [1℄ ou porque envolvem um pré-proessamento das sequênias de entrada [2�4℄.Consequentemente, estes métodos estão limitados a onsiderar motivos relativamente urtose uma pequena gama de valores possíveis para as distânias entre ada omponente.Atualmente, tanto quanto é possível apurar, existe apenas um grupo de algoritmos queonsegue e�ientemente identi�ar motivos omplexos om um número arbitrário de om-ponentes separados por um espaçamento de tamanho variável [5, 6℄. Adiionalmente, estesalgoritmos inorporam a possibilidade de onsiderar substituições de nuleótidos nos váriosomponentes do motivo omplexo.Estes algoritmos têm, no entanto, uma desvantagem que diz respeito ao número de parâmet-



ixros que é neessário espei�ar. Para efetuar uma pesquisa de motivos omplexos é neessárioindiar o número de omponentes que se pretende extrair, o tamanho mínimo e máximo deada omponente, bem omo o espaçamento mínimo e máximo entre ada omponente. Éneessário ainda indiar a perentagem de regiões promotoras em que se exige que o motivooorra para que seja reportado.Este tese tem omo prinipal objetivo o desenvolvimento de um método apaz de estimaros parâmetros de pesquisa para os algoritmos ombinatórios deste tipo. O método propostoproura identi�ar orrelações nas sequênias de entrada que possam denuniar a presença deum motivo omplexo omum a várias regiões promotoras.O método que é apresentado faz uso de uma matriz de o-oorrênias. Cada elemento destamatriz india o número de sequênias de entrada em que a on�guração mais omum entredois pares de sequênias de tamanho λ oorre. Usando ténias de bilustering, são agrupadoselementos desta matriz de forma a onstruir motivos, eventualmente motivos omplexos.Os resultados experimentais mostram que esta abordagem permite identi�ar e�iente-mente um onjunto de araterístias importantes de motivos que pode ser usado para guiara espei�ação de parâmetros de pesquisa para algoritmos modernos de extração de motivos.
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Chapter 1
Introdution
1.1 ContextThe researh e�ort underlying this thesis was arried out at the ALGorithms for Simulationand Optimization Group (ALGOS Group) of INESC-ID, Lisboa. This work bene�ts from theontributions of many of the ongoing projets in the ALGOS Group (in the area of data miningand bioinformatis) and it is part of a growing e�ort to embrae the �eld of omputationalbiology.This work was partially supported by the Projet BIOGRID POSI/SRI/47778/2002.1.2 AimsIn reent years, espeially after the ompletion of genome sequening projets for variousorganisms, there has been a growing interest in the study of regulation and gene expressionmehanisms. The amount of data now available not only onerning genome sequenes butalso gene expression pro�les makes it unfeasible to pursue a manual analysis, and alls forsome sort of automati proessing. The study of biologial systems requires omputationalapproahes not only in the analysis of biologial data but also in guiding laboratory researh.In this ontext, bioinformatis tools have beome more and more entral to the ativity ofbiologists.Despite the remarkable suess of these tools in some areas of appliation like gene �nding,sequene alignment, et, there are still problems for whih no signi�ant results have been1



2 CHAPTER 1. INTRODUCTIONahieved. Notably, the identi�ation of biologially meaningful nuleotide sequenes in is-regulatory regions remains an open problem.The identi�ation and haraterization of regulatory regions is a fundamental task sinethe onditions that determine the ativation and transription of genes depend on nuleotidesequenes found therein, referred to as motifs. Many approahes have been proposed and onean �nd a panoply of published papers desribing novel algorithms to address the problem.Currently available methods an roughly be lassi�ed in two main lasses: probabilistiand ombinatorial. Other approahes have also been tried inluding methods using neuralnetworks, geneti programming, et, but with unlear results.Probabilisti methods have the advantage of requiring few searh parameters but rely onprobabilisti models of the regulatory regions whih an be very sensitive with respet to smallhanges in the input data. Some of these methods also make simplifying assumptions aboutthe nature and abundane of the motifs to be extrated.Combinatorial methods tend to be exhaustive but are left with two main problems: iden-tifying biologially relevant results in the output and determining the appropriate extrationparameters. For these methods, the problem of determining what portion of the output or-responds to a biologially signi�ant result has been addressed mostly through the use ofstatistial tehniques and biologial reasoning and it is a hallenge in its own right. The prob-lem of determining the appropriate extration parameters is one of the entral goals of thisthesis and an only be understood if we examine the way urrent algorithms operate.A key feature of modern motif �nders is the ability to extrat omplex motifs, i.e., non-ontiguous nuleotide sequenes. The advantages of onsidering omplex motifs are twofold.On the one hand they are good representations of some instanes of the underlying biologialphenomena and on the other hand they are easier to extrat sine the distane betweenontiguous omponents an be a restrition that �lters spurious output.Currently there is, to the best of our knowledge, only one group of algorithms that allow theextration of omplex motifs with an arbitrary number of omponents (SMILE/RISO [5,6℄).The SMILE/RISO algorithms are ombinatorial approahes that prove to be e�etive ande�ient when the appropriate extration parameters are reasonably bound.The main goal of this thesis is to devise an e�ient method to adjust extration pa-rameters for modern motif �nders, partiularly SMILE/RISO, using bilustering tehniques.



1.3. CLAIM OF CONTRIBUTIONS 3Furthermore, this method has been validated both with syntheti and real biologial data.1.3 Claim of ontributionsIn this thesis we propose a method to adjust extration parameters for modern motif �nders,with an emphasis on the extration of omplex motifs. This method relies on a bilusteringalgorithm that operates on a matrix of o-ourrenes of small sequenes. The performaneof this method is independent of the omposite struture of the motifs being sought, makingfew assumptions about their harateristis.1.4 Layout of the thesisIn the next hapter we introdue the essential onepts required to understand the underlyingbiologial problem.In hapter 3 we onsider the omputational problem of extrating motifs and disuss theurrently available methods.In hapter 4 we present our proposal to address the problem of parameter spei�ationand introdue the onept of diagonally-puntured biluster. An algorithm inspired by bilus-tering tehniques is desribed alongside the presentation of an algorithm to generate a matrixof o-ourrenes.In hapter 5 we present the experimental results of our method with both syntheti andreal data.In hapter 6 we disuss the approah we have taken and the results that have beenobtained while simultaneously presenting a roadmap for future researh.In order to failitate the reading of this thesis we also present a glossary with key terms ofmoleular biology and an index of notation that we have introdued to formalize our approah.1.5 ConventionsIn this thesis we will use the ommon onventions adopted in the omputer siene ommunity,with one notable exeption. Many authors oming from the realm of omputer siene andmathematis and who have subsequently embraed the study of life sienes (and those who



4 CHAPTER 1. INTRODUCTIONdid the opposite migration) giving birth to the multidisiplinary �eld of omputational biologysometimes struggle with matters of terminology. In partiular, the terms sequene and sub-sequene are many times used in bioinformatis to refer to the onepts of string and sub-stringwhih are well known in the �eld of omputer siene. We will adopt the terminology usedin the omputational biology ommunity and we shall always refer to sequenes and sub-sequenes when we mean string and sub-string. Furthermore, we will use Σ to denote thealphabet over whih all the sequenes are de�ned. Throughout this thesis we will alwaysassume that Σ = {A,T,G,C} but all assertions will be made to an unspei�ed Σ alphabet,unless otherwise indiated.



Chapter 2
Fundamentals of moleular biology
In this hapter we present the fundamental onepts required to understand the biologialproblem that motivates the omputational methods disussed in this thesis.2.1 Struture of nulei aidsThe �eld of moleular biology greatly bene�ted from the disovery of the three-dimensionalstruture of DNA by Watson and Crik in 1953 [7℄. The DNA moleule, present in all livingells, is the arrier of geneti information whih is neessary to ontrol all ellular ativities.This information is passed down to eah new generation almost �awlessly. DNA is omposedof two strands of nuleotides forming a double helix (Fig. 2.1). A nuleotide is a moleuleformed by a pentose (deoxyribose in DNA), a phosphate group and a nitrogenous base. Thereare four suh nuleotides found in DNA, di�ering only on their nitrogenous base: Adenine(A), Guanine (G), Cytosine (C) and Thymine (T).The pentose sugar-phosphate links form the bakbone of the DNA moleule and are loatedin the exterior of the double helix. The two strands of DNA are kept together by hydrogenbonds linking eah pair of bases. In a omplete helix, Adenine always pairs with Thymineand Cytosine always pairs with Guanine. Beause of this, the two strands are said to beomplementary (Fig. 2.2).The information ontained in DNA is represented by the spei� sequene of nuleotidesin either strand (the sequene of nuleotides in the omplementary strand an be inferredonsidering the base-pairing sheme disussed earlier). It is, in fat, a digital repository of5
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Figure 2.1: DNA double-helix struture.

Figure 2.2: Nuleotides and the struture of DNA
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Figure 2.3: RNA versus DNAinformation onsisting of a text written with a four-letters alphabet.Although DNA is struturally idential in all living ells, in prokaryotes onsists of a singleirular moleule whereas in eukaryotes is found assoiated with several proteins to form aomplex named hromatin, whih is loated in the nuleus [8℄.However, not all regions of the DNA moleule seem to arry information. Those regionswhih do arry information are named genes and are said to be oding regions. Genes ontainthe instrutions neessary to diret biologial ativities in the ell and at by determining thestruture of proteins. Genes are expressed as �nal produts that generally onsist of proteinswhih an serve di�erent purposes: they an form part of the ell wall, at as atalyti om-ponents (enzymes) or in�uene the expression of genes and are, therefore, ators in virtuallyall ellular ativities. The nonoding regions betweens genes are alled spaer sequenes. Ineukaryoti ells it is ommon to �nd genes whih ontain large amounts of nonoding regions.In these genes, oding regions named exons are separated by nonoding regions named introns.RNA is another nulei aid related to DNA. There are some important di�erenes betweenthese two moleules. Firstly, unlike DNA, RNA is a single stranded moleule. The pentosefound in RNA is ribose and not deoxyribose (thene the name of the moleules) and the
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Figure 2.4: Shemati representation of the proesses involved in gene expression in prokary-otes and eukaryotesnuleotide Thymine is substituted by Urail (U) (Fig. 2.3). Despite being a single strandedmoleule, RNA sometimes presents loops where homologous portions of the moleule self-hybridize. Neither the di�erent sugar nor the base substitution alter the base-pairing shemefound in DNA. Interestingly, in livings ells, one an �nd always larger quantities of RNAthan of DNA. In fat, the amount of RNA varies with hanging metaboli onditions whereasthe amount of DNA is onstant (in ells whih are not in the proess of ell division). This isonsistent with the fat that RNA is a fundamental intermediary in the expression of genetiinformation as we will see below.2.2 Gene expressionThe entral dogma of moleular biology [8℄ establishes a pathway for the �ow of genetiinformation: DNA → RNA → protein, i.e., from the DNA repository to the �nal produtsof gene expression. The �rst proess in whih RNA moleules are synthesized from a DNAtemplate is alled transription. The RNA moleule thus obtained is alled Messenger RNA(mRNA). The subsequent proess in whih mRNA is used as a template for protein synthesisis alled translation.In prokaryotes, transription and translation our almost simultaneously whereas in eu-
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10 CHAPTER 2. FUNDAMENTALS OF MOLECULAR BIOLOGY

Figure 2.6: Shemati representation of regulation in prokaryotestriplets are used to ode for the same aminoaid, although no triplet is used to ode for morethan one aminoaid (Fig. 2.5). For this reason, the geneti ode is said to be degenerate orredundant. The degeneray of the geneti ode is what aounts for the existene of silentmutations, i.e., DNA mutations that ause a odon to be hanged into another whih happensto ode for the same aminoaid thus yielding an idential protein.
2.3 Regulation of gene expressionThe genes of an organism are not all simultaneously expressed. Their ativation depends onthe urrent needs of the ell and is subjeted to various regulatory mehanisms. One of themost important mehanisms is the transriptional regulation. Some of the nonoding regionsof DNA play a fundamental role in the regulation of transription. These regions (regulatoryregions) ontain small sequenes of nuleotides, known as motifs, whih are reognized byproteins assoiated with the transription mahinery. The most ommon regulatory regionsare loated upstream of the start of transription and are alled promoter regions or, in abroader sense, is-regulatory regions. The presene of these motifs is essential for the e�ientbinding of the ellular transription mahinery. Di�erent motifs an play di�erent roles ingene expression. While some are ritial for eliiting the start of transription others reruitproteins whih at as ativators or repressors.RNA polymerase is responsible for the transription proess. This enzyme, when examinedin vitro, transribes DNA into RNA but initiates at nonspei� sites on the DNA.
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Figure 2.7: Shemati representation of regulation in eukaryotesIn bateria1, the RNA polymerase ore is found assoiated to an essential subunit alledSigma (σ). This σ fator imposes a level of spei�ity restriting the initiation of transriptionto promoter sequenes. As many as seven di�erent σ subunits have been identi�ed [9℄, eahof whih direts the RNA polymerase to bind a unique set of promoters. The most ommonsubunit is σ70 and is responsible for transribing most genes. However, the assoiation witha σ subunit will usually only yield a basal transription level. The ation of DNA-bindingproteins alled ativators whih also bind spei� motifs allow for higher levels of expressionby e�iently reruiting the RNA polymerase to spei� genes (Fig. 2.6). On the other hand,the binding of another sort of proteins named repressors to spei� sites an halt transriptionaltogether. Both ativators and repressors an be referred to generially as transriptionfators.A notable exeption is σ54 whih binds to spei� promoter sequenes in a stable butinative state. It requires the ation of an ativator to start any level of transription. Otherregulatory mehanisms in bateria inlude the ation of another kind of ativator whih induesa onformational hange in the promoter to eliit the start of transription [9℄.Transriptional regulation in eukaryotes [8℄ is onsiderably more omplex although thesame basi priniples apply. In fat, eukaryotes use di�erent types of RNA polymerase fordi�erent purposes. The most studied type whih is also responsible for transribing most1It is worth noting that bateria are prokaryoti organisms.



12 CHAPTER 2. FUNDAMENTALS OF MOLECULAR BIOLOGYgenes is RNA polymerase II. This type of RNA polymerase requires several general transrip-tion fators to form a funtional transription initiation omplex. As with bateria, spei�transription fators modulate the ativity of RNA polymerase.The regulation of transription in eukaryotes is primarily made at the level of initiation oftransription although in some ases it may be attenuated or stimulated at subsequent steps.Many genes in eukaryoti ells are ontrolled by regulatory sequenes loated far upstreamfrom the transription start site (sometimes over 10 000 nuleotides). These sequenes, alledenhaners, were found to stimulate transription and are binding sites for transription fatorswhih are allowed to interat with the transription mahinery beause the intervening DNAan form loops (Fig. 2.7). Interestingly, enhaners are ative regardless of orientation withrespet to the diretion of transription and an be loated either upstream or downstream ofthe transription start site. In addition to these regulatory mehanisms, eukaryoti ells analso regulate transription by modifying the state of ondensation of hromatin.Genes whih are o-regulated are bound to share at least a subset of motifs whih orre-spond to binding sites of transription fators. Similarly, genes from losely related speies,performing the same biologial funtion and purportedly having evolved from an anestralgene (orthologous genes), are expeted to have onserved regulatory sequenes. Finding om-mon sequenes in the regulatory regions of these sets of genes is the basis for the operation ofmotif �nders as we shall see in the next hapter.



Chapter 3
Related work
3.1 Motif �ndingThe identi�ation of promoter sequenes and binding sites for transription fators is one ofthe most important tasks in the study of gene regulation. The searh for the elements involvedin gene expression regulation onsists, essentially, in the identi�ation of well onserved regionsin nonoding DNA.These well onserved regions are usually referred to as onsensus sequenes or motifs.Motif �nding is the problem of disovering these motifs without any prior knowledge of theirharateristis. As we said in the previous hapter these motifs an be sought by analyzingregulatory regions taken from genes of the same organism or from related genes of di�erentorganisms.The �rst approah is based on the assumption that motifs ommon to a number of regula-tory regions are likely to have a relevant role in gene expression regulation. In this approahwe an largely bene�t from knowledge derived from miroarray experiments or from quanti-tative proteomis analysis whih allows us to group genes that are oordinately expressed inertain experimental onditions. It is, then, reasonable to assume that some of these geneswill be o-regulated, in the sense that they will share ative regulatory elements.The seond approah, known as phylogeneti footprinting [10℄, requires areful seletionof what sequenes to inlude. These sequenes must orrespond to regulatory regions of geneswhih are evolutionarily related and that are involved in the same biologial ativities indi�erent speies. This approah is based on the assumption that funtional regions of DNA13



14 CHAPTER 3. RELATED WORKsu�er fewer mutations than non-funtional regions due to the seletive pressure to preservetheir biologial role. Well onserved regions aross these sequenes are therefore expeted tohave a regulatory funtion.Given a set of genes hosen following one of the previously desribed approahes, thetask of identifying their regulatory regions is not always straightforward. In eukaryotes, theregulatory elements an be loated quite far upstream from the start of transription but overonly a small portion of the intergeni regions [8, 11℄. As a rule of thumb, one an hoose toonsider strethes of up to a few thousand nuleotides upstream from the transription startsite. However, in the ase of enhaners, ative binding sites an be loated downstream ofthe gene or even in introns. In prokaryotes, intergeni regions are usually muh smaller andregulatory elements are loated fairly near the start of transription. However, prokaryotigenes also tend to luster in strutures alled operons whih share a regulatory region governingthe expression of all the genes in the group [8,9℄. Moreover, there are ases in whih genes ofan operon ontain seondary promoters in addition to the ommon regulatory region so thateven if information were available about whih genes form operons (whih, generally, is not)the orresponding intergeni regions ould not be disarded without areful analysis.It is also known that the transription mahinery will reognize binding sites even if themotifs do not our exatly [12℄, i.e., if there are some nuleotide substitutions or even inser-tions and deletions. Sine we annot always on�dently establish a set of o-regulated genesa omputational approah to motif �nding should also permit motifs not to our in all inputsequenes.An algorithm to address motif �nding (i.e., a motif �nder) should, therefore, takle theproblem of extrating motifs under these di�ult onditions and with relatively few informa-tion. This problem is sometimes referred to as ab initio motif extration. A related problemis motif loalization whih onsists in the identi�ation of the ourrenes of a motif in asequene given a motif desription. In this thesis we are mainly onerned with motif �nding.However, both problems bear the question of motif representation.Motifs have been represented as a nuleotide sequene (onsensus sequene), a pro�lematrix, a weight matrix, an automaton or a sequene over a degenerate alphabet [12℄, butmost modern motif �nders report extrated motifs as plain nuleotide sequenes or as a weightmatrix. These weight matries, alled PWM (Position Weight Matries) or PSSM (Position



3.1. MOTIF FINDING 15Spei� Sore Matries) generally represent ontiguous nuleotide sequenes of a ertain length
l. These |Σ| × l matries keep, for eah position in the motif, a sore for eah harater inthe nuleotide alphabet. Reall that a PSSM is desribing a set of motif ourrenes so thesesores should allow us to distinguish a true ourrene from a non-ourrene.The �rst attempt to ompute the sores for these weight matries used a pereptron [13℄and was aimed at deteting translation initiation regions in mRNA. The weights of the matrixwere the same omputed for the neural network, given the appropriate enoding for eah motifourrene to be desribed.Later attempts omputed the sores as the negative logarithms of the frequenies of eahnuleotide at eah position [14�16℄. The sum of the sores for any partiular sequene yieldsthe negative logarithm of the probability of observing that partiular sequene in the olletionof desribed motif ourrenes, assuming that the positions are independent.In [17℄, a study was made onerning the information ontent held by several knownbinding sites at eah position. This ulminated in another way to ompute the sores of thePSSM [18℄ where eah element in the weight matrix is alulated as:

H(b, i) = − ln
fb,i

pbwhere b ∈ Σ is one of the four nuleotides, i is a position in the motif being desribed, fb,iis the frequeny of the nuleotide b in position i aross the set of ourrenes and pb is thefrequeny of nuleotide b aross the entire genome of the organism being onsidered. It is notlear, however, what pb should be when we try to desribe ourrenes of motifs taken fromregions of di�erent organisms. In [19℄ the authors noted the lak of a good estimate of thestatistial signi�ane of observing a spei� information ontent and proposed a method foralulating the p-value of an information ontent sore.It is easy to see that in the methods disussed so far the sore of a partiular sequene issimply the result of the additive ontribution of the sores of eah nuleotide in eah position.More reent de�nitions ompute the sore of eah element of the matrix as the rela-tive frequeny of eah nuleotide introduing pseudo-ounts to ompensate for small learningsets [12, 20℄. In this approah, eah element is omputed as:
W (k, j) =

mj(k) + bk

m + bwhere mj(k) denotes the number of times the nuleotide k ∈ Σ ours in position j in the set of



16 CHAPTER 3. RELATED WORKknown binding sites, bk is the pseudo-ount introdued for eah nuleotide k, m is the numberof known binding sites and b =
∑

k∈Σ
bk. In this ase, the sore of a partiular sequene is theprodut of the orresponding elements.Using weight matries to represent a motif has the lear advantage of apturing muhmore information about the putative binding site than other representations. For instane,many transription fators will reognize, at some positions, a purine (adenine or guanine), apyrimidine (ytosine or thymine), a weak bond (thymine or adenine) or a strong bond (ytosineor guanine) regardless of the spei� nuleotide present therein. This information is not solearly represented by an equivalent olletion of plain nuleotide sequenes (patterns). Onthe other hand, plain sequenes are more appropriate for motifs with few degenerate positionsand failitate the problem of determining what is a motif ourrene.There are two major lasses of motif �nders: probabilisti and ombinatorial. Although notall algorithms �t adequately into this lassi�ation, the most popular motif �nders urrentlyavailable do.Probabilisti methods inlude approahes based on EM (Expetation-Maximization) [21℄like PROJECTION [22℄ and MEME [23,24℄ or its stohasti analog, Gibbs sampling [25�27℄used by GibbsDNA [25℄. These methods use a two-phase iterative proedure where in the�rst step the likeliest ourrenes of the motif are identi�ed, based on a model omputed inthe previous iteration. The seond step adjusts the model for the motif (usually a weightmatrix) based on the ourrenes determined in the previous step. In the �rst iteration theparameters of the initial model are usually set randomly.Some probabilisti approahes assume that the motif will our in all input sequenes orrequire the spei�ation of a �xed length. The most �exible algorithms in this lass requireonly a length range to be spei�ed. The major drawbak with these algorithms is theirsensitivity to noise in the data and the fat that they are not guaranteed to onverge to aglobal maximum. Moreover, most of them assume that there will only be one motif ourringin the input sequenes and at most one in eah sequene. Some algorithms like MEME haveremoved these assumptions but are less e�ient [23, 24℄.CONSENSUS [19℄ is a greedy algorithm that outputs PSSMs, saving instanes with thebest information ontent sore in eah step. It is, one again, not guaranteed to �nd optimalsolutions but it an ope with zero or multiple ourrenes of the motif in eah input sequene.



3.1. MOTIF FINDING 17Combinatorial methods, whih typially extrat motifs onsisting of plain nuleotide se-quenes or sequenes over a degenerate alphabet, usually involve enumerating all possiblepatterns either expliitly or impliitly. The simpliity of this approah allows us to de�ne alear omputational problem. Consider a set of sequenes S = {S1, S2, . . . , St}. We are askedto �nd motifs within a range of lengths lmin, . . . , lmax, whih our on q ≤ t of the presentedsequenes with at most e mismathes, i.e., at most e nuleotide substitutions (also referredto as having a Hamming distane up to e). It follows from this de�nition that a motif mayor may not our exatly on the given set of sequenes, due to the allowed degeneration. Forinstane, in the example illustrated by Fig. 3.1, only the motif CATAT is extrated, whereasin the ase of Fig. 3.2 motifs CATAA,CATAC,CATAG and CATAT satisfy the extrationparameters. The reason for requiring the motif to our in less than t sequenes is related tothe fat that some input sequenes may be orrupted in the sense that they may not atuallyontain the motif being sought. Algorithms that take this approah either enumerate all pos-sible patterns of a �xed length l, whih we will heneforth refer to as an l-mer, and verify itsourrene in the input sequenes with at most e mismathes (pattern-driven approah) ortake eah l-mer ourring in the input sequenes and generate its e-mismath neighbourhood,i.e., all the patterns up to e mismathes away from the pattern being onsidered, and keep atable with a hit ount, reporting all patterns above the q threshold (sample-driven approah).Several branh-and-bound algorithms have been proposed in the last few years that try toredue the exponential searh spae taking advantage of sophistiated data strutures. TheMULTIPROFILER algorithm [28℄ follows a sophistiated sample-driven approah wherebyit manages to avoid generating the e-mismath neighbourhood for all sampled sequenes. Pat-ternBranhing [29℄, on the other hand, manages to avoid analyzing all the patterns in the
e-mismath neighbourhood of a sample sequene. The WINNOWER algorithm [2℄ is basedon graph theory. It represents eah l-mer as a vertex in a graph and eah pair of verties isonneted by an edge if the two l-mers have no more than 2e mismathes. Motifs are foundby identifying liques in the graph. MITRA [3℄ relies on a mismath tree that partitionsthe searh spae. Eah branh of the tree is labeled with a letter representing one of thefour nuleotides and eah node is assoiated with the l-mers in the input sequenes whosepre�x mathes the path-label of the node with at most e mismathes. The algorithm will stopbranhing as soon as it determines that the subspae assoiated with a node is unable to hold
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cis−regulatory region
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GATTGCATCATATATCCGATT

gene
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AGCCGATTA . . .

GACCGTACGCCATATGAAGCAATTGCATTAC . . .

ACTCATATGCCTACTTAGCTAGCTAATTTGC . . .Reports: CATATFigure 3.1: Motif extration for l = 5, e = 0 and q = t = 3

cis−regulatory region
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GATTGCATCATAGATCCGATT

gene
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AGCCGATTA . . .

GACCGTACGCCATACGAAGCAATTGCATTAC . . .

ACTCATAAGCCTACTTAGCTAGCTAATTTGC . . .Reports: CATAA,CATAC,CATAG and CATATFigure 3.2: Motif extration for l = 5, e = 1 and q = t = 3a motif ourring in a least q ≤ t input sequenes. SMILE [5℄ and RISO [6℄ use a generalizedsu�x-tree [30, 31℄ to represent the set of input sequenes. They then perform an exhaustivelexiographi searh to identify motifs whih our in q ≤ t input sequenes with at most emismathes. While traversing the su�x-tree the algorithm avoids visiting all nodes by haltingthe searh whenever it determines that the restritions imposed by the extration parametersan no longer be met.Despite the fat that these algorithms take exponential time or spae in terms of l, theyrepresent a straightforward approah to motif �nding and, unlike the probabilisti methods,their output is easily interpreted.The major problems with ombinatorial motif �nders are their inability to disriminate therelevant extrated motifs from the potentially numerous false positives and the large numberof parameters that need to be spei�ed (espeially when searhing for omplex motifs as wewill disuss in the next setion). The large number of false positives is mostly dealt with usingstatistial tests to assess how unexpeted is an extrated motif for a spei� set of parameters,given the statistial harateristis of the input sequenes [32�34℄. Addressing the problem ofthe large parameter spae is the entral aim of this thesis and will be disussed in the nexthapter.



3.1. MOTIF FINDING 193.1.1 Extration of omplex motifsSo far we have mainly disussed the extration of motifs onsisting of ontiguous sequenesof nuleotides, also known as simple motifs, monads or ungapped patterns. In e�et, earlyalgorithms had little or no support for the extration of motifs with gaps. These motifs withgaps or spaers, whih we will refer to as omplex motifs, otherwise known as omposite motifs,strutured motifs or multi-ads (dyads, triads, et.) onsist of several ordered simple motifs ata ertain distane of one another.The advantages of onsidering omplex motifs are manyfold. On the one hand, omplexmotifs an be better models of promoter regions. Some transription fator DNA-binding do-mains have a omposite struture, forming dimers (helix-loop-helix or leuine-zipper domains)and the ooperative binding of several transription fators and RNA polymerase to the DNAmoleule also seems to be bound by distane restritions. On the other hand, many authorsnow agree that omponent motifs may be too weak to be extrated in isolation, i.e., they maybe poorly distinguishable from the surrounding noise in the sequenes, but by imposing a er-tain distane between omponent motifs an unusual (and thus statistially signi�ant) patternmay be identi�ed. This is a ritial issue for algorithms that extrat too many motifs and areleft with the problem of deiding whih of them are to be onsidered relevant. In addition tothese advantages, omplex motifs an be used to model simple motifs with highly degenerateentral regions. In this ase, the gap between omponent motifs e�etively orresponds to aset of wildards.As we said, most motif �nders have limited ability to inorporate gaps. However, in reentyears several proposals have been published. Some ombinatorial as well as probabilisti algo-rithms an now extrat omplex motifs although usually with no more than two omponentsand often searhing for a gap of a �xed length. These approahes are in general not verye�ient sine they enumerate all possible motifs with two omponents either expliitly [1℄ orby preproessing the input sequenes, as is the ase withWINNOWER [2℄ andMITRA [3,4℄.This preproessing involves generating virtual (l1 + l2)-mers resulting from the onatenationof every l1-mer at a ertain range of distanes from every other l2-mer in the input sequenesthereby reduing the problem to �nding simple motifs. If the range of aeptable distanesbetween eah omponent is wide this method beomes very ine�ient in pratie, espeiallyfor large or numerous input sequenes. These methods are, therefore, restrited to onsidering
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y1 y2 y3 . . . ym

x1 a11 a12 a13 . . . a1m

x2 a21 a22 a23 . . . a2m

x3 a31 a32 a33 . . . a3m. . . . . . . . . . . . . . . . . .
xn an1 an2 an3 . . . anmFigure 3.3: Representation of a data matrixrelatively short motifs and a limited range of distanes between eah omponent.To the best of our knowledge, there is only one family of algorithms whih an e�ientlysearh for omplex motifs with an arbitrary number of omponents separated by a vari-able distane and, in addition, is able to inorporate mutations in any of the omponents:SMILE/RISO [5,6℄. These ombinatorial algorithms take advantage of a su�x-tree to delivertheir unmathed �exibility. However, there is a prie to pay for this �exibility whih has to dowith the size of the parameter spae and the need to adjust the searh parameters to obtaina tratable output.3.2 BilusteringIn the next hapter we will introdue a method for parameter estimation using bilusteringtehniques. It is, then, important to o�er some bakground on the problem of identifyingbilusters and to disuss urrently available algorithms.Bilustering algorithms have already been extensively used to address problems in the �eldof omputational biology, in partiular, in the analysis of gene expression data [35℄. Usually,gene expression data is arranged in a data matrix, where eah row orresponds to a geneand eah olumn orresponds to an instant of time or an experimental ondition. Fig. 3.3illustrates a data matrix where eah row xi an represent a di�erent gene and eah olumn yia spei� ondition.In order to identify an ativation pattern ommon to a group of genes under a subsetof all the experimental onditions we have to searh for a proper sub-matrix, i.e., a subsetof rows and a subset of olumns. Traditional lustering algorithms are not able to ahieve



3.2. BICLUSTERING 21this, sine they would only identify either a subset of genes presenting a similar behaviouraross all experimental onditions or a subset of onditions where every gene behaves simi-larly. A new approah whih ame to be known as bilustering allows us to group rows andolumns simultaneously reporting a subset of genes exhibiting a similar behaviour on a subsetof onditions.Given a data matrix, A, with n rows and m olumns, aij is the matrix element on row
i and olumn j. Matrix A, an be seen as a set of rows X = {x1, . . . , xn} and olumns
Y = {y1, . . . , ym}, denoted by (X,Y ). A biluster, B, being a subset of rows I ⊆ X andolumns J ⊆ Y , an be denoted by (I, J).The problem addressed by bilustering algorithms is the identi�ation of a set of bilusters
Bk = (Ik, Jk) given a data matrix A, so that eah element on a biluster Bk satis�es somespei� harateristi of homogeneity. In this thesis we are only interested in identifying avariation of onstant bilusters, i.e., a biluster, (I, J), where eah of its elements has the samevalue, α, i.e., aij = α for all i ∈ I, j ∈ J . A biluster that obeys the previous ondition is saidto be a perfet onstant biluster, but in many situations one is ontent with a near-onstantor low-variane biluster.A data matrix an be seen as a representation of a weighted bipartite graph. A graph
G = (V,E), where V is the set of verties and E the set of edges, is said to be bipartiteif its verties an be partitioned into two sets L and R (V = L ∪ R), suh that every edge,
(u, v) ∈ E, is suh that u ∈ L and v ∈ R. A data matrix A = (X,Y ) an be seen as a weightedbipartite graph where eah node ni ∈ L, orresponds to a row and nj ∈ R orresponds toa olumn. The edge (ni, nj) ∈ E has weight aij denoting the matrix element on row i andolumn j.The problem of �nding bilusters an be equated with the problem of �nding a biliquein a bipartite graph. A bilique in a bipartite graph, G = (L ∪ R,E), is a sub-graph G′ =

(L′ ∪R′, E′) suh that L′ ⊆ L, R′ ⊆ R, E′ = {(u, v) ∈ E : u ∈ L′, v ∈ R′} in whih (u, v) ∈ E′for all u ∈ L′,v ∈ R′. Fig. 3.4 shows a bipartite graph, with eah li and ri vertex pertainingto the L and R partitions, respetively. The maximum size bilique, in this example, is theone formed by verties l1, l2, r1, r2 and the edges between them.Considering the simplest ase, when our data matrix A is a binary matrix, i.e., a matrixwhose elements are either 0 or 1, the orresponding bipartite graph will ontain the edge



22 CHAPTER 3. RELATED WORKPSfrag replaements
l2

l1

l3

r1

r2

r3Figure 3.4: Example of a bipartite graph
(ni, nj) i� aij = 1. In this ase, a onstant biluster in A with eah aij = 1 orrespondsto a bilique in the bipartite graph. Thus, identifying a maximum size biluster in A isequivalent to �nding a maximum edge bilique in a bipartite graph, whih is known to bean NP-omplete problem [36℄. The searh for more sophistiated types of bilusters that hasto perform omputations on the atual value of eah matrix element is neessarily not lessomplex than this ase. It is not surprising, then, that most algorithms that address thisproblem use heuristi approahes.In many situations, however, we have to onsider the fat that the value of an element
aij in the data matrix must be seen as the result of the ontribution of all the bilusters thatshare row i and olumn j. To aount for this situation, some authors have introdued a plaidmodel [37℄ in whih eah element of the data matrix is viewed as a sum of layers. The plaidmodel an be de�ned as follows:

aij =

K∑

k=0

θijkρikκjkwhere K is the number of layers (bilusters) sharing row i and olumn j of the data matrix,
θijk denotes the ontribution of biluster Bk for the value of the spei�ed matrix element, andwhere ρik and κjk are binary values representing the membership of row i and olumn j withrespet to biluster Bk. The value θij0 is used to model a possible biluster inluding the entiredata matrix ontributing with a bakground value ommon to all matrix elements. Therefore,we de�ne ρi0 = κj0 = 1. This has been designated as the general additive model [35℄. If we



3.2. BICLUSTERING 23are onsidering only onstant bilusters then θijk = αk, where αk is the onstant value of allelements of Bk.Similarly, one an de�ne a general multipliative model [35℄, as suh:
aij =

K∏

k=0

θijkρikκjkCurrent algorithms will either try to identify a single biluster whih maximizes a givenmerit funtion (e.g. minimum variane, in the ase of onstant bilusters) or a given numberof bilusters. To this e�et, the di�erent methods an take one of many approahes. In oneapproah, the algorithms will disover one biluster at a time [37,38℄. In this ase, previouslyidenti�ed bilusters need to be masked (usually with random values) so that the algorithm doesnot repeatedly extrat the same biluster or they an extrat eah biluster iteratively relyingon a plaid model. In another approah, the methods may try to disover a set of bilusters at atime [39�41℄. These methods usually rely on hierarhial lustering algorithms that iterativelygenerate lusters of rows and olumns whih are subsequently ombined to extrat bilusters.Finally, the algorithms an try to disover all bilusters simultaneously [42�44℄. In this ase,they usually rely on a set of initial bilusters alled seeds whih are obtained by randomlyassigning rows and olumns to eah. The algorithms will then start an iterative proess inwhih they try to improve the quality of the bilusters with respet to a merit funtion byadding or removing rows and olumns. Another alternative is to try to exhaustively enumerateall bilusters [45�51℄, an approah we will disuss below.Currently available bilustering algorithms have been divided into �ve lasses:1. Iterative row and olumn lustering ombination2. Divide and onquer3. Greedy iterative searh4. Exhaustive biluster enumeration5. Distribution parameter identi�ationThe �rst lass is the most straightforward approah to bilustering and onsists of al-gorithms whih try to iteratively ombine lusters of rows and lusters of olumns obtained



24 CHAPTER 3. RELATED WORKseparately [40, 41, 48℄. The lass named divide and onquer refers to algorithms whih breakthe problem into several similar subproblems of smaller size [39, 52℄. These smaller problemsare then reursively solved and subsequently ombined to obtain a solution to the originalproblem. These methods generally work by splitting the data matrix into sub-matries a-ording to some heuristi funtion. Divide-and-onquer algorithms are potentially very fastbut they may miss an unde�ned number of bilusters whose elements our aross varioussub-matries and whih are onsequently split before they an be identi�ed. Methods whihperform a greedy iterative searh proeed by always making the loally optimal hoie hopingthat it will lead to a good global solution [38,42�44,50,51,53℄. These methods are based in thegreedy addition or removal of rows/olumns in order to maximize a merit funtion. The lassof algorithms performing exhaustive biluster enumeration [45�47℄ is based on the observationthat the best bilusters with respet to a merit funtion an only on�dently be identi�edusing a thorough analysis of all possible bilusters. There is, however, an exponential numberof possible bilusters in terms of the size of the data matrix. These methods, therefore, arefored to assume restritions on the size of the bilusters and to use e�ient tehniques ifthey are to be of pratial use. Finally, algorithms based on distribution parameter identi�-ation [37, 54, 55℄ assume that bilusters are generated aording to a statistial model. Therationale is, therefore, to estimate the distribution parameters that better �t the data. Thisis done by relying on an iterative proedure whih tries to minimize a given riterion.In the next hapter we will disuss a method that uses bilustering tehniques relying onan algorithm whih an be plaed within the lass of algorithms performing greedy iterativesearh. Despite using a non-onventional de�nition of the problem it will still apply the basipriniples disussed in this setion.



Chapter 4
Inferene of omplex motifs
Current methods for the extration of omplex motifs have a major drawbak. Their outputis, in pratie, extremely sensitive with respet to input parameters. If we are too permissiveby allowing a high degree of degeneration or by onsidering a large range of allowable lengthsor yet, if we require the motifs to be present only in a small fration of the input sequenes,we may get an inommensurate number of motifs as output and we are left with the problemof identifying the biologially relevant ones. On the other hand, if we speify rigid parameters,like a spei� length, low degree of degeneration and require the motif to be present in allsequenes we may get no output at all. In fat, without any prior information, any rigidparameter spei�ation is purely speulative. These problems are even more pressing foromplex motifs where one needs to speify the number of omponents, the allowed length andthe number of mismathes for eah, and also the distane between omponents. An exhaustivesearh in the parameter spae in this ase is absolutely unfeasible. In this thesis we presenta method whih an address these issues by avoiding some degree of parameter sensitivity,espeially in what onerns omplex motifs.In [5℄, Sagot pointed out the need to distinguish between a motif and its ourrenes in theinput sequenes. In fat, Sagot avoided the use of the term motif altogether introduing thenotion of model. A model orresponds to a desription of what onstitutes a model ourrene.This distintion is partiularly useful for omplex motifs. A model (simple motif) is de�nedas a sequene over Σ+. A model m is said to have an e-ourrene, or simply an ourrene,in the input sequenes, if there is a word u in the input sequenes at a Hamming distane of
m not greater than e. A model is said to be valid if it has ourrenes in at least q ≤ t input25



26 CHAPTER 4. INFERENCE OF COMPLEX MOTIFSsequenes. A strutured model (omplex motif) is de�ned as a pair (m,d) where:
• m = (mi)1≤i≤p is a p-tuple of models (mi ∈ Σ+), denoting p omponents
• d = (dmini

, dmaxi
, δi)1≤i≤p−1 is a (p−1)-tuple of triplets, denoting the p−1 gaps betweenomponentsFurthermore, onsidering a set of input sequenes S = {S1, . . . , St}, a strutured model issaid to be valid if, for all 1 ≤ i ≤ p− 1 and for all ourrenes ui of mi, there are ourrenes

u1, . . . , up of simple motifs m1, . . . ,mp suh that:
• u1, . . . , up belong to the same input sequene
• there exists di, with dmini

+ δi ≤ di ≤ dmaxi
− δi, suh that the distane between the endposition of ui and the start position of ui+1 in the sequene is in [di − δi, di + δi]

• di is the same for the p-tuple of ourrenes present in at least q ≤ t distint inputsequenesThese de�nitions serve the purpose of a motif �nder whih needs to restrit the searhspae and to deide what is a su�iently ommon pattern so that it an be reported. Theyo�er a lear de�nition of what should be extrated and reported as a valid motif under spei�searh parameters, inluding the number of omponents, and the distane parameters.Our purpose is to identify features in the input sequenes that indiate the presene ofinteresting patterns (not unlike motif �nders in this regard), by taking a broader view of thesearh spae. We make no assumptions about the number of omponents of the omplexmotifs we are looking for, nor about the distanes between eah omponent. We sari�e,however, the preditability of the results insofar as the method we propose is not guaranteedto identify the presene of all interesting omplex motifs and will also be vulnerable to thepossibility of reporting false positives. Furthermore, as an initial approah, we do not onsiderthe searh for motifs with degeneration.In this ontext, we de�ne a omplex motif loosely as being omposed of an unde�nednumber of omponent simple motifs eah separated by a distane that is allowed to varywithin an interval of width 2ε, this means that a omplex motif an be seen as a pair (m,d)where m = (mi)1≤i≤p, with mi ∈ Σ+ and d = (di)1≤i≤p−1. An ourrene of a omplex motif



4.1. MATRIX OF CO-OCCURRENCES 27
S1 : TAACCTGGTACA
S2 : CGAATCTTGGTC
S3 : GGAACTGCGGTG
S4 : CTAATCCTAGGC
S5 : GTAACTTCCGGT
S6 : TCAAGCCTAGGCFigure 4.1: A set of input sequenesis, similarly, a set of exat ourrenes of eah omponent simple motif, u1, . . . , up in the sameinput sequene, where eah ourrene is separated by a gap whose length is in [di− ε, di + ε].The only parameter we are expeted to speify is ε. All the other harateristis of theomplex motif are to be identi�ed by this new exploratory method.4.1 Matrix of o-ourrenesAs we have said, the motivation for the method we propose is the need to avoid arbitrarilyde�ned extration parameters. Thus, instead of seeking motifs whih onform to ertain pre-de�ned riteria, we try to haraterize ertain features of the input sequenes. To that e�et,we begin by building a matrix of o-ourrenes,M, as we will explain below.To build this matrix we will �rst need to identify all ourrenes of sequenes of very smalllength, λ, i.e., all λ-mers in the input sequenes, S = {S1, . . . , St}.Let L(S) = {m1, . . . ,mz} be the list of all suh λ-mers1 , noting that z ≤ |Σ|λ. Fig. 4.1shows a set of input sequenes that we will use to illustrate the de�nitions given below. Inthis example we will use λ = 2 to make it easier to follow.De�nition 4.1 (List of ourrenes of a λ-mer) Let S be a set of input sequenes andlet m ∈ L(S). Oi,S(m) denotes the set of oordinates of all ourrenes of m in Si ∈ S.This set, Oi,S(m), is therefore a list of integers denoting the positions at whih we an�nd m on a sequene Si ∈ S. Whenever the set of input sequenes, S, is lear from the1Good mathematial pratie would advise us to denote the list of all λ-mers on a set of sequenes S as

Lλ(S). We will, however, omit the λ lest our notation beomes too dense. We will assume that the value of λis �xed and known aross all de�nitions.



28 CHAPTER 4. INFERENCE OF COMPLEX MOTIFSontext we will simply write Oi(m). Conerning the example in Fig. 4.1, it is easy to seethat O3(GG) = {1, 9}, O1(AA) = {2} or that O6(TT) = ∅.De�nition 4.2 (Con�guration of a pair of λ-mers) Let S be a set of input sequenes. Aon�guration of a pair of λ-mers is a triple (mr,ms, d), with mr,ms ∈ L(S) and d ∈ Z \ {0}.In this de�nition we simply introdue a mathematial objet whih we all a on�guration.This objet is assoiated to a set of input sequenes and will be used to denote the o-ourrene of a pair of λ-mers in a spei� relative position.De�nition 4.3 (Con�gurations of a pair of λ-mers over a sequene Si ∈ S) Let S bea set of input sequenes and let mr, ms ∈ L(S). ∆i,S(mr,ms) denotes the set of all on�gu-rations of mr and ms over Si ∈ S.
∆i,S(mr,ms) = {(mr,ms, d) : d = cs − cr, cr ∈ Oi,S(mr), cs ∈ Oi,S(ms), cr 6= cs}Note that if we onsider the on�guration (mr,ms, d) and if d < λ then the on�gu-ration atually represents the ourrene of a (λ + d)-mer. It is also interesting to notethat ∆i,S(ms,mr) = {(ms,mr, d) : (mr,ms,−d) ∈ ∆i,S(mr,ms)}. One again, we will use

∆i(mr,ms) every time the set of input sequenes is lear from the ontext. Consideringthe previous example, we an observe that ∆3(AA, GG) = {(AA, GG,−2), (AA, GG, 6)} or that
∆6(AA, TT) = ∅.De�nition 4.4 (Sore of a on�guration of a pair of λ-mers) Let S be a set of inputsequenes and let mr, ms ∈ L(S) and d ∈ Z.

µi,S : Σλ × Σλ ×Z 7→ {0, 1} is the membership funtion of a on�guration with respet tothe set of all on�gurations of the two λ-mers on an input sequene Si ∈ S, de�ned as:
µi,S(mr,ms, d) =







1 if (mr,ms, d) ∈ ∆i,S(mr,ms)

0 otherwise

σS : Σλ×Σλ×Z 7→ {0, . . . , |S|} is the sore funtion for a on�guration and is de�ned as:
σS(mr,ms, d) =

|S|
∑

i=1

µi,S(mr,ms, d)



4.1. MATRIX OF CO-OCCURRENCES 29The sore of a on�guration of a pair of λ-mers is nothing more than the number ofsequenes where that partiular on�guration an be observed. Like in previous de�nitions, wewill use σ(mr,ms, d) without mentioning the set of input sequenes whenever it is lear whihset we are onsidering. In the example of Fig. 4.1 we have σ(AA, GG, 7) = 3, sine GG ours7 positions after AA in sequenes S4, S5 and S6, yielding µ4,S(AA, GG, 7) = µ5,S(AA, GG, 7) =

µ6,S(AA, GG, 7) = 1.De�nition 4.5 (ε-tolerant sore of a on�guration of a pair of λ-mers) Let S be a setof input sequenes and let mr,ms ∈ L(S) and ε ∈ N0. The ε-tolerant sore of a on�guration
σε
S : Σλ × Σλ ×Z 7→ N0 is de�ned as:

σε
S(mr,ms, d) =

|S|
∑

i=1

max
k=−ε,...,ε

µi,S(mr,ms, d + k) (d 6= 0)Furthermore, σε
S(mr,ms, 0) = 0.The onept of ε-tolerant sore of a on�guration of a pair of λ-mers addresses the needto allow for a on�guration to have slight variations. This removes the stritness of requiringa pair of λ-mers to o-our at �xed relative positions in order to have a high sore. This anbe illustrated by the example shown in Fig. 4.1 where σ(AA, GG, 7) = 3, σ(AA, GG, 6) = 2 and

σ(AA, GG, 5) = 1 but σ1(AA, GG, 7) = 5, σ1(AA, GG, 6) = 6 and σ1(AA, GG, 5) = 3. A 1-tolerantsore is able to grasp the fat that the 2-mer AA o-ours with GG in all input sequenes at adistane of 6±1 positions. Inidentally, σ1(AA, GG, 4) = 1, despite the fat that σ(AA, GG, 4) = 0.This an be useful to desribe patterns of o-ourrene that have a high ε-tolerant sore eventhough they never atually our in the input sequenes.De�nition 4.6 (Most ommon on�guration of a pair of λ-mers) Let S be a set of in-put sequenes and let mr,ms ∈ L(S). A on�guration (mr,ms, d
∗) is said to a most om-mon on�guration of the two λ-mers if, for every on�guration (mr,ms, d), σS(mr,ms, d

∗) ≥

σS(mr,ms, d).Furthermore, we say it is a ε-tolerant most ommon on�guration if the same assertionholds for the ε-tolerant sore.The notion of most ommon on�guration will be used to �nd the on�guration or, indeed,the on�gurations with the highest sore for a pair of λ-mers. From the example shown in



30 CHAPTER 4. INFERENCE OF COMPLEX MOTIFSAA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TTAA 0 3 2 2 1 3 2 6 2 2 6 4 3 3 3 2AC 3 1 0 0 1 1 2 3 1 1 3 3 2 1 2 1AG 2 0 1 1 1 2 0 2 0 2 2 0 2 2 0 0AT 2 0 1 0 0 1 1 2 1 1 2 1 1 2 1 1CA 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0CC 3 1 2 1 1 0 1 3 0 2 4 2 2 2 1 1CG 2 2 0 1 0 1 0 2 1 1 2 2 1 1 1 1CT 6 3 2 2 1 3 2 1 2 3 5 3 3 2 3 2GA 2 1 0 1 0 0 1 2 0 1 2 2 0 1 2 1GC 2 1 2 1 1 2 1 3 1 1 2 1 2 2 1 0GG 6 3 2 2 1 4 2 5 2 2 1 4 3 3 3 2GT 4 3 0 1 1 2 2 3 2 1 4 1 2 2 3 2TA 3 2 2 1 1 2 1 3 0 2 3 2 2 2 1 1TC 3 1 2 2 1 2 1 2 1 2 3 2 2 1 1 1TG 3 2 0 1 1 1 1 3 2 1 3 3 1 1 1 1TT 2 1 0 1 0 1 1 2 1 0 2 2 1 1 1 0Figure 4.2: Matrix of o-ourrenes,M1, for the input sequenes of Fig. 4.1Fig. 4.1 it is easy to see that the most ommon on�guration for the pair (AA, GG) is (AA, GG, 7).The 1-tolerant most ommon on�guration is, however, (AA, GG, 6).We an now de�ne a matrix of o-ourrenes that gathers the information about the
ε-tolerant sore of the most ommon on�guration of every pair of λ-mers.De�nition 4.7 (Matrix of o-ourrenes) Let S be a set of input sequenes. A matrixof o-ourrenes over S with ε tolerane, Mε

S , is the matrix where eah of its elements aij isde�ned as:
aij = σε

S(mi,mj , d
∗)where (mi,mj , d

∗) is a ε-tolerant most ommon on�guration of mi,mj ∈ L(S) and i, j =

1, . . . , |L(S)|.The matrix of o-ourrenes ,M1, derived from the input sequenes of Fig. 4.1 is shownin Fig. 4.2. We an see, by inspeting the matrix and the input sequenes, that there are twoon�gurations with the maximum 1-tolerant sore: (AA, CT, 3) and (AA, GG, 6). In this ase, itis easy to see that AA o-ours with CT in all sequenes at a relative distane of 3 ± 1 andwith GG, also in all sequenes at a relative distane of 6± 1.



4.1. MATRIX OF CO-OCCURRENCES 31The matrix of Fig. 4.2 is symmetri. The next lemma will prove that it is always the ase.Lemma 4.1 A matrix of o-ourrenes, Mε
S is symmetri, i.e., aij = aji for every i, j =

1, . . . , |L(S)|.ProofLet us assume there are p, q ∈ {1, . . . , |L(S)|} suh that apq 6= aqp. This entails theassertion that σε
S(mp,mq, d

∗
pq) 6= σε

S(mq,mp, d
∗
qp), where (mp,mq, d

∗
pq) and (mq,mp, d

∗
qp) are

ε-tolerant most ommon on�gurations of (mp,mq) and (mq,mp), respetively.Let us onsider, without loss of generality, that σε
S(mp,mq, d

∗
pq) > σε

S(mq,mp, d
∗
qp)It follows that

|S|
∑

i=0

max
k=−ε,...,ε

µi,S(mp,mq, d
∗
pq + k) >

|S|
∑

i=0

max
k=−ε,...,ε

µi,S(mq,mp, d
∗
qp + k)It is easy to see that ∆i,S(mp,mq) = {(mp,mq, d

∗
pq) : (mq,mp,−d∗pq) ∈ ∆i,S(mq,mp)}.Therefore, for every sequene Si we have that µi,S(mp,mq, d

∗
pq) = µi,S(mq,mp,−d∗pq). Andonsequently,

|S|
∑

i=0

max
k=−ε,...,ε

µi,S(mp,mq, d
∗
pq + k) =

|S|
∑

i=0

max
k=−ε,...,ε

µi,S(mq,mp,−d∗pq + k)But this means that σε
S(mq,mp,−d∗pq) > σε

S(mq,mp, d
∗
qp) whih ontradits the fat that

(mq,mp, d
∗
qp) is a ε-tolerant most ommon on�guration of (mq,mp).

�Algorithm 1 omputes the matrix of o-ourrenes with ε-tolerane. We will now showthat its time omplexity is O(N2) where N =
∑|S|

i=1
|Si|. It is easy to see that the lists ofourrenes for every λ-mer in every sequene an be obtained in a pre-proessing stage in

O(N) time. The yle from line 5 through line 18 onsiders all ourrenes of all λ-mers ineah sequene. There are exatly ∑|S|
i=1
|Si| − λ + 1 < N suh ourrenes and therefore thenumber of possible pairs of ourrenes is O(N2), whih orresponds to the number of timesthe yle will be invoked. Eah operation in the yle an be performed in O(1) onsideringthat ε is �xed and that the sets Confi an be implemented using two arrays of size |Si| (onefor negative and another for positive values of d). The yle from line 19 through line 21 isinvoked at most ∑|S|

i=1
(|Si|−λ+1)2 < N2 times sine there an be no more than (|Si|−λ+1)2



32 CHAPTER 4. INFERENCE OF COMPLEX MOTIFSAlgorithm 1 Computes the ε-tolerant matrix of o-ourrenes1: for all mr,ms ∈ L(S) do2: MaxSore← 03: for all Si ∈ S do4: Confi ← ∅5: for all cr ∈ Oi(mr), cs ∈ Oi(ms) do6: d← cr − cs7: if d 6= 0 then8: Confi ← Confi ∪ {(mr,ms, d)}9: for k = 1 to ε do10: if d + k 6= 0 then11: Confi ← Confi ∪ (mr,ms, d + k)12: end if13: if d− k 6= 0 then14: Confi ← Confi ∪ (mr,ms, d− k)15: end if16: end for17: end if18: end for19: for all (mr,ms, d) ∈ Confi do20: Sore[(mr,ms, d)]← Sore[(mr,ms, d)] + 121: end for22: end for23: for all (mr,ms, d) ∈
⋃

i Confi do24: if Sore[(mr,ms, d)] > MaxSore then25: MaxSore← Sore[(mr,ms, d)]26: end if27: end for28: M [r, s]← MaxSore29: end for



4.2. BICLUSTERING APPROACH 33Complex motif: TTGCAn5TATTACon�gurations of 4-mers: (TTGC,TGCA,1) (TGCA,TTGC,-1)(TTGC,TATT,6) (TATT,TTGC,-6)(TTGC,ATTA,7) (ATTA,TTGC,-7)(TGCA,TATT,5) (TATT,TGCA,-5)(TGCA,ATTA,6) (ATTA,TGCA,-6)(TATT,ATTA,1) (ATTA,TATT,-1)Figure 4.3: Con�gurations of 4-mers indued by the presene of a omplex motifon�gurations of pairs of λ-mers in a sequene. The same an be said for the yle from line
23 through line 27. This yields a time omplexity of O(N + N2 + N2 + N2) = O(N2). Interms of spae, the lists of ourrenes of λ-mers ombined will take O(N) spae. The samean be said of the arrays implementing the Confi sets. Similarly, the Sore attribute of eahon�guration an be implemented with a pair of arrays, taking O(N) spae for eah pair of
λ-mers. Sine these arrays an be re-used for eah pair, they will take no more than O(N)spae. The matrix itself requires O(|L(S)|2 ≤ |Σ|2λ) spae. The total spae requirements aretherefore in O(N + |Σ|2λ).4.2 Bilustering approahAs we have said, the matrix of o-ourrenes gives us a view, for eah pair of λ-mers, of theabundane of its most ommon on�guration (or on�gurations). The next step is to try toombine these on�gurations to form larger patterns, possibly omplex motifs. In doing so,we are guided by the sore values omputed during the onstrution of the matrix.Consider the example in Fig. 4.3. The presene of a omplex motif with two omponentsof length 5 eah separated by a distane of 5 nuleotides indues 12 on�gurations of pairs of 4di�erent 4-mers. Let us suppose that this omplex motif is present in exatly 8 di�erent inputsequenes. The sore of eah of these on�gurations is therefore no lower than 8. Admittingthat none of these on�gurations our in other input sequenes, Fig. 4.4 represents a sub-matrix of the matrix of o-ourrenes that would be generated.This example illustrates the basi priniple of our approah to the inferene of omplex



34 CHAPTER 4. INFERENCE OF COMPLEX MOTIFSATTA TATT TGCA TTGCATTA 0 8 8 8TATT 8 0 8 8TGCA 8 8 0 8TTGC 8 8 8 0Figure 4.4: Sub-matrix indued by TTGCAn5TATTA, assuming that it ours in 8 input sequenesmotifs using the matrix of o-ourrenes. However, what we set out to do is the reverse ofthe reasoning shown in this example, i.e., we want to identify ertain patterns in the matrixof o-ourrenes that ould indiate the presene of a omplex motif.We begin by haraterizing the patterns we are looking for.De�nition 4.8 (Diagonally-puntured biluster in a matrix of o-ourrenes) A diagonally-puntured biluster, B(I,Λ), in a matrix of o-ourrenes M is a sub-set of the elements aijofM desribed by a pair (I,Λ), with Λ ⊆ I, and de�ned as:
B(I,Λ) = {aij : i 6= j, i ∈ I, j ∈ I} ∪ {aii : i ∈ Λ}with i, j = 1, . . . , |L(S)|.A diagonally-puntured biluster in a matrix of o-ourrenes is, therefore, an objet thatroughly orresponds to a square sub-matrix of M exept that the elements in the diagonalhave an optional membership.This is an unonventional type of biluster for two reasons. Firstly, the olumns thatbelong to the biluster are entirely de�ned by the indies of the rows (and vie-versa) and,seondly, the diagonal elements are not neessarily inluded in the set of elements of thebiluster. This is, arguably, not a biluster at all but sine we lak a more appropriate termwe will still all it a biluster bearing in mind its speial harateristis.De�nition 4.9 (h-valid diagonally-puntured biluster in a matrix of o-ourrenes)An h-valid diagonally-puntured biluster, B(I,Λ), in a matrix of o-ourrenes M is adiagonally-puntured biluster suh that aij ≥ h for every aij ∈ B(I,Λ).



4.2. BICLUSTERING APPROACH 35The sub-matrix of Fig. 4.4 illustrates this onept. We an think of it as a diagonally-puntured biluster where I orresponds to the set of indies of the 4-mers ATTA, TATT, TGCAand TTGC, and where Λ = ∅. If this is the ase, we are in the presene of an 8-valid diagonally-puntured biluster.De�nition 4.10 (Cut of height h in a matrix of o-ourrenes) A ut of height h ina matrix of o-ourrenes, M, Ch(M) is a set of its elements de�ned as:
Ch(M) = {aij : aij = h}with i, j = 1, . . . , |L(S)|.The notion of ut in a matrix of o-ourrenes will be useful later. At this point itis only worth noting that all h-valid diagonally-puntured bilusters have their elements in

⋃|S|
l=h Cl(M).Let us reall that we are looking for patterns in the matrix of o-ourrenes that anindiate the presene of a omplex motif. We are interested in identifying diagonally-punturedbilusters that inlude as many elements of the matrix as possible and are h-valid for thehighest value of h attainable. Suh a biluster would hopefully signal the presene of a omplexmotif in as many as h di�erent input sequenes. As we have remarked earlier, a simple motifis just a partiular ase of a omplex motif and a diagonally-puntured biluster ould, infat, indiate the presene of a simple motif of length greater than λ. For instane, the motifAAATT indues the following on�gurations of 4-mers2 : (AAAT, AATT, 1) and (AATT, AAAT,−1),whih would orrespond to a diagonally-puntured biluster in the matrix of o-ourrenes(provided the motif was frequent enough aross the input sequenes).This approah thinks of omplex motifs (and simple motifs) as ompositions of on�gura-tions of λ-mers that will be shown in the matrix of o-ourrenes in the form of diagonally-puntured bilusters. However, sine we onsider only the most ommon on�gurations ofpairs of λ-mers some information an be lost. In addition, the input sequenes an ontainmany omplex motifs that will in turn indue many on�gurations of λ-mers, possibly in-terfering with the on�gurations indued by other omplex motifs. It is important, then, to2It also indues 6 on�gurations of 3-mers, 12 on�gurations of 2-mers, et. The impat of the hoie ofthe value of λ will be disussed later.



36 CHAPTER 4. INFERENCE OF COMPLEX MOTIFSsystematize what we an and what we annot hope to �nd in searhing for bilusters in thematrix of o-ourrenes.Firstly, we should note that this method is unable to identify simple motifs of length λ orshorter. This is due to the fat that the matrix of o-ourrenes only onsiders on�gurationsof pairs of λ-mers, (mr,ms, d). All simple motifs that an be identi�ed are (λ + d)-mers.Likewise, omplex motifs whose omponents are shorter than λ will not be identi�ed.Seondly, motifs omposed of λ-mers whih repeat more than twie will indue multipleon�gurations of the same pair of λ-mers with idential sores. Consider, for example, themotif AAATTTn3AATTAAT and suppose we hoose λ = 3. This motif will indue many on�gura-tions of 3-mers, inluding (AAT, AAT, 8), (AAT, AAT, 12) and (AAT, AAT, 4). These on�gurationswill have the same sore and will be represented in the matrix of o-ourrenes by a singleelement in the main diagonal. Furthermore, the on�gurations (AAT, ATT, 1) and (AAT, ATT, 9)will also be indued and will be represented by the same pair of elements in the matrix ofo-ourrenes. This is not a problem, in priniple, for it is still possible to infer the strutureof the omplex motif from these on�gurations. But the smaller the value we hoose for λ themore likely it is that on�gurations of λ-mers unrelated with the omplex motif be inluded inthe biluster. For instane, if the motif AATAAT is at least as ommon as the omplex motif weare onsidering, then, the on�gurations it indues will pollute those indued by the omplexmotif and will e�etively undermine our ability to infer the struture of the omplex motif.Finally, an interesting motif ould fall short from being identi�ed. This an happen ifanother motif omposed by the same set of λ-mers (or a superset) is more frequent. Considerthe omplex motif we disussed above and let λ = 3. If the motif ATTTn3TAAT is a di�erentbinding site but present in less sequenes than AAATTTn3AATTAAT then it will be undetetablefor the on�gurations it indues will not be most ommon on�gurations of the 3-mers thatompose it. It is worth noting that if it ourred in more sequenes than the previous motif itwould have ompromised our ability to reonstrut it from the on�gurations it indues sinesome would have been superseded by those with a higher sore. If it ourred in exatly thesame number of sequenes it would result in a merger of the sets of most ommon on�gurationsindued by eah motif whih would likewise make the task of inferring the motifs muh harder.This illustrates the fat that the hoie of λ is ritial. If it is too large it may miss smallermotifs and if it is too small it will render our method vulnerable to spurious on�gurations



4.2. BICLUSTERING APPROACH 37interfering with interesting motifs or similar motifs interfering with eah other. These short-omings of our approah, albeit numerous, onern situations whih are very unlikely for anappropriate hoie of λ and are here presented for the sake of a thorough disussion.It may happen, however, that by hane several unrelated on�gurations of pairs of λ-mers have idential sores and end up being grouped to form a biluster. These false positivesmay be deteted by onsidering eah ontributing on�guration beause it is unlikely that thedistane values are ompatible in the sense that they annot be ombined to form a motif.An easier way to detet these spurious bilusters would be to keep, for eah on�guration,information about whih sequenes it ourred in. This would allow us to determine thatthese on�gurations were ourring in di�erent sets of sequenes and were therefore unrelated.If two motifs share o-ourring pairs of λ-mers regardless of whether they onern thesame on�gurations or not, then the sore of the matrix element representing the shared pairwill take the value orresponding to the most frequent motif aross input sequenes, i.e., thesore of the most ommon on�guration. This gives us our partiular plaid model:
aij = max

k=1,...,K
θkρijkwhere θk represents the ontribution of the kth biluster to the value of aij and ρijk, isa binary value representing the membership of the element aij to the kth biluster. If theinterferene refers to di�erent on�gurations then we may not be able to reonstrut the lessfrequent motif. However, if it refers to the same on�guration we an identify both.This gives us the right ue for the algorithm we propose. Algorithm 2 begins by onsideringthe matrix of o-ourrenes, Mε

S , starting with the elements in Ch(Mε
S) with the highestsore, h. Sine this matrix is symmetrial, our starting point is either an element on the maindiagonal or a pair of elements from the upper and lower triangle respetively. In either ase,it is a diagonally-puntured biluster. For eah of these bilusters we will then greedily addrows/olumns as long as the orresponding elements have a sore not lower then the sore ofour initial elements. The same is performed for the diagonal elements. Elements whih havealready been inluded in a biluster are not used as a starting point for ulterior bilusters.This way we are e�etively seeking bilusters with high sores whih inlude as many matrixelements as possible. By allowing initial bilusters to inlude elements with a higher sore thanthe sore of the original elements we are addressing the observation we made while disussing



38 CHAPTER 4. INFERENCE OF COMPLEX MOTIFSour plaid model. This an be translated in the fat that a on�guration whih ours in
h input sequenes will a fortiori also our in h′ < h input sequenes. The algorithm willontinue onsidering elements with dereasing sores until a minimum sore is reahed, belowwhih any biluster is deemed insu�iently ommon to be of interest.The algorithm will onsider at most |L(S)|2 ≤ |Σ|2λ matrix elements as the starting pointand to eah of these initial bilusters will add at most |L(S)| ≤ |Σ|λ rows/olumns. Ateah tentative addition of rows/olumns it will have to hek whether the resulting bilusteris h-valid resulting in at most |L(S)|2 ≤ |Σ|2λ omparisons. This yields a time omplexityof O(|Σ|4λ). However, the larger the bilusters the less matrix elements will be used as astarting point, so this bound is not tight. Determining a tighter bound is quite di�ult sinethe relation between the average size of the bilusters and the number of initial elementsonsidered is not easily established due to the fat that di�erent bilusters an e�etivelyshare many matrix elements.Algorithm 2 is a heuristi approah to our problem in the sense that it misses an unde�nedpart of the solution. In e�et, it an determine at most |L(S)|2 di�erent bilusters. Thereare, however, as many as 3

|L(S)|
3 possible bilusters, as we shall see.Consider a matrix of o-ourrenes and another matrix with the same size. Eah elementof this new matrix holds the value 1 if the orresponding sore in the matrix of o-ourrenesis not below h and 0 otherwise. This binary matrix an be seen as a graph G = (V,E). Eahrow/olumn is a vertex and eah pair of verties is onneted by an edge if the orrespondingelement in the binary matrix has the value 1. We an e�etively ignore the values held by themain diagonal for this disussion. Searhing for all largest diagonally-puntured bilusters inthis binary matrix is the same as searhing for all maximal liques in the orresponding graph.This problem is known to be NP-hard and there an be as many as 3

|V |
3 maximal liques in agraph [56℄.Our algorithm is, therefore, trying to solve the equivalent to the problem of enumerating allmaximal liques for eah sore h it onsiders. In fat, we do not atually require the bilustersto be maximal and sine the binary matrix for eah sore h tends to be sparse the number ofmaximum size bilusters is likely to be muh smaller than the theoretial maximum.One we have identi�ed the diagonally-puntured bilusters of interest we an then tryto reonstrut the motif that indued the on�gurations we have grouped. To that e�et,



4.2. BICLUSTERING APPROACH 39
Algorithm 2 Extrats bilusters in a matrix of o-ourrenes1: for h = t to minsore do2: bilustersh ← ∅3: for all aij ∈ Ch(M) do4: if aij 6∈

⋃

Bk∈bilustersh
Bk then5: if i = j then6: I ← {i}7: Λ← {i}8: else9: I ← {i, j}10: Λ← ∅11: end if12: for k = 1 to |L(S)| do13: if B(I ∪ {k},Λ) is h-valid then14: I ← I ∪ {k}15: if B(I,Λ ∪ {k}) is h-valid then16: Λ← Λ ∪ {k}17: end if18: end if19: end for20: bilustersh ← bilustersh ∪ {B(I,Λ)}21: end if22: end for23: end for



40 CHAPTER 4. INFERENCE OF COMPLEX MOTIFSwe need to have previously taken note of the possibly multiple most ommon on�gurationsassoiated with eah element in the matrix of o-ourrenes. These on�gurations an easilybe assembled to reonstrut the original motif unless they have been polluted by on�gurationsindued by other motifs as we have already disussed. For small bilusters this assembly anbe done by inspetion. A general method of assembly is left for future work. However, as a�rst approah we an think of a weighted multi-graph whose verties orrespond to the λ-merspartiipating in the biluster and whose edges are labeled with the relative distanes betweeneah pair of λ-mers as indiated by the most ommon on�gurations in eah matrix elementgrouped in the biluster under onsideration. A traversal of this graph will purportedly beable to perform the assembly of the original motif.In this hapter we desribed a new method that an e�etively guide the parameter spei-�ation for modern motif �nders by estimating the number of omponents and the omponentlength for omplex motifs (and simple motifs, whih are a partiular ase). It annot, how-ever, give a reliable indiation of the number of sequenes in whih the reonstruted motifsour in. An h-valid biluster is simply a biluster whose elements, i.e., whose on�gurationsof λ-mers our in no less than h input sequenes. We keep no information about whihsequenes they atually our in so we annot on�dently say that they all refer to the sameset of sequenes. For this reason, and for the fat that it is, in e�et, simply an heuristiapproah it annot ompete with motif �nders. It an, instead, be used as a tool to apturethe harateristis of the input sequenes and ollet evidene of the presene of interestingmotifs whih ould otherwise go unnotied.In the next hapter we present the results of the appliation of this method to bothsyntheti and biologial data sets.



Chapter 5
Results
In this hapter we present and disuss the result of applying the method proposed in this thesisto several data sets. The method was applied to both arti�ially generated (syntheti) datasets and to a real data set. The advantage of using syntheti data sets is the ability to speifyexatly whih motifs we wish to plant in the data against a random bakground. This way wean safely test our method sine we ontrol every aspet of the signal hidden in the randomsequenes. However, syntheti data sets are still very di�erent from real sequenes in thesense that these annot be aurately modeled as motifs with a role in transription regulationsurrounded by meaningless nuleotides. Regulatory regions are the result of the interferene ofvarious signals whih are important for di�erent proesses. The distribution of nuleotides inthese regions is not random sine it is in�uened by many fators like the evolutionary historyof the speies. Other restritions ome from the very nature of these regions whih need tobe easily aessed by the transription initiation omplex and are therefore usually riher inA-T ontent (A-T bonds are weaker than C-G bonds). It is, therefore, important to test ourmethod with real data. To this e�et we hose to apply it to a well haraterized data set [57℄for whih a binding site has been determined with high on�dene.5.1 Syntheti DataThe syntheti data sets that we will desribe in this setion were produed using a simplerandom generator based on ran2 [58℄. Eah data set, unless otherwise indiated, onsists of100 sequenes of length 600. The length was hosen to be 600 to onform to the average length41



42 CHAPTER 5. RESULTSof the sequenes that will be used in the analysis of real data.There are two important parameters in our method: λ whih de�nes the length of our
λ-mers and ε whih de�nes the tolerane with whih we sore on�gurations of λ-mers. Re-all that the ε-tolerant sore of a on�guration, (mr,ms, d), onsiders the ontribution of allon�gurations (mr,ms, d

′) suh that d′ ∈ [d− ε, d + ε].We did not onsider the ases where λ ≤ 2 beause, as we mentioned in the previoushapter, this will inrease the number of most ommon on�gurations in eah element of thematrix of o-ourrenes making the task of identifying motifs harder. The ases in whih
λ > 4 have two inonvenients. Not only the generated matrix is exeedingly large but wewill also be unable to identify omplex motifs with omponents shorter than 5 nuleotides orsimple motifs less than 6 nuleotides long. Our results will, therefore, only show the aseswhere λ = 3 and λ = 4. We will also only onsider the ases where ε = 0 and ε = 1 sinelarger values for our tolerane will in�ate the sore of most on�gurations. In any ase, we donot disard the interest of performing a broader study.Reall that Algorithm 2, whih identi�es diagonally-puntured bilusters also uses theparameter minsore referring to the minimum sore required for eah element of a bilusterto allow it to be identi�ed. In every analysis performed in this hapter we have onsideredminsore = 10.In the following disussion we will refer to sore levels or simply levels to talk aboutfeatures whih beome apparent when looking at elements in the matrix of o-ourreneswith a given sore. Therefore, when we refer to all elements at level h we are referring to allelements in the matrix of o-ourrenes, M, with sore h or, equivalently, to all elementsin Ch(M). Similarly, when we refer to bilusters identi�ed at level h we mean all bilusterswhose elements with least sore are at level h (h-valid bilusters).5.1.1 No planted motifsThe �rst step in this analysis is to haraterize the noise. That is, we want to haraterize theoutput of our method when applied to random sequenes with no planted motifs. This givesus a baseline with whih to ompare results.In Fig. 5.1 we an see the superposition of the distribution of the sores of on�gurations(matrix elements) from three di�erent random data sets with no planted motifs. We an



5.1. SYNTHETIC DATA 43distinguish three loal maxima in the graph: one around level 90, another lose to level 45and yet another slightly above level 25. We argue that the maximum at the highest levelorresponds to the number of expeted ourrenes of motifs of length 4 in a data set withthese harateristis. Eah motif of length 4 has a probability of (1

4
)4 = 1

256
. In a sequene oflength 600 it has many opportunities to our. A naive approah would indiate that givena probability of 1

256
and 600 − 4 + 1 = 597 opportunities of ourrene one would expet

2.33 ourrenes of motifs of length 4 in every sequene, yielding a sore of 100 for eahorresponding on�guration. However, this approah ignores the fat that not all motifs anbe overlapped (thus not having those many opportunities of ourrene). The true expetednumber of ourrenes is surely below 2.33. So we would expet our loal maximum to besomewhere lose to but below 100. The same reasoning an be applied to motifs of length5 yielding an expeted number of ourrenes lose to 0.58 and ould, therefore, explain theseond loal maximum. This loal maximum is higher simply beause more elements of thematrix are required to ompose a motif of length 5 than a motif of length 4. The remainingloal maximum is simply the ombination of the expeted number of ourrenes for less likelypatterns. It is also worth noting that the height of the maxima at lower levels depends on theheight of the maxima at higher levels. This is due to the fat that the sore of a on�gurationrefers only to a most ommon on�guration. Therefore, if a matrix element is ommited torepresent a motif it annot be used to represent a less likely motif.Using this model we an predit the shape of a similar plot for data sets with varyingsequene length. For a data set with longer sequenes we expet the maximum referring tomotifs of length 4 to be higher and loser to level 100 re�eting both the inreased numberof matrix elements ommited to represent these motifs and the greater likelihood of theirourrene in input sequenes. In a data set with shorter sequenes we expet all maximato be at lower levels and to be loser to one another. Fig. 5.2 shows the number of matrixelements per sore level of a data set with no planted motifs and with sequenes of length2000. Fig. 5.3 shows the same but for a data set with sequenes of length 100.Another interesting plot is the number of identi�ed bilusters per sore level. Fig. 5.4shows this information for the data sets analyzed in Fig. 5.1. Both plots have a similar shapeshowing that the number of bilusters for a given sore level is, in this ase, highly orrelatedwith the number of matrix elements with the same sore. This is not suprising, espeially if
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Figure 5.1: Number of Elements per Sore Level in 3 syntheti data sets without plantedmotifs (λ = 3, ε = 0, |S| = 100, |Si| = 600)
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Figure 5.2: Number of Elements per Sore Level in a syntheti data set without planted motifs(λ = 3, ε = 0, |S| = 100, |Si| = 2000)the identi�ed bilusters have a low number of elements. Let us de�ne the volume of a biluster,
B(I,Λ), as the number of matrix elements overed by B(I,Λ). Fig. 5.5 shows the averagevolume of bilusters per sore level for the same data sets. We an see that the average volume
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Figure 5.3: Number of Elements per Sore Level in a syntheti data set without planted motifs(λ = 3, ε = 0, |S| = 100, |Si| = 100)of bilusters is very low (below 8, but mostly around 1-2) down until around sore level 60.Below this point many spurious bilusters are identi�ed and below level 20 they over almostthe entirety of the o-ourrene matrix.
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Figure 5.4: Number of Bilusters per Sore Level in 3 syntheti data sets without plantedmotifs (λ = 3, ε = 0, |S| = 100, |Si| = 600)
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Figure 5.5: Average Biluster Volume per Sore Level in 3 syntheti data sets without plantedmotifs (λ = 3, ε = 0, |S| = 100, |Si| = 600)These results show that if we planted a motif in these data sets and made it our in lessthan 20 input sequenes it would be indistinguishable from the noise. The same, however,does not happen if we analyze the same data sets but having λ = 4. In Fig. 5.6 we presentthe results for this analysis.By using λ = 4 our method beomes oblivious to motifs of length 4 whih explains thedisappearane of the orresponding loal maximum in the number of elements per sore levelplot. The overall magnitude of the noise is also greatly dereased (note that the o-ourrenematrix in this ase has 65536 elements, ompared to the 4096 elements in the ase where
λ = 3). The highest soring most ommon on�guration is now down to a muh lower level(level 62) and the average biluster volume inreases with dereasing sore levels with a muhgentler slope.It is lear that a higher tolerane level will inrease the noise in any data set. The onlyreason why our method onsiders using tolerane at all is the fat that in some ases it mayinrease the signal more e�iently than the noise. The only question at this point is howmuh inrease in noise is one to expet. Fig. 5.7 gives us an idea of the impat of onsidering
ε = 1 for the same three data sets onsidered so far, maintaining λ = 4.We an see a signi�ant inrease in noise magnitude, espeially for lower sore levels. We
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Figure 5.6: Number of Elements, Number of Bilusters and Average Biluster Volume per SoreLevel in 3 syntheti data sets without planted motifs (λ = 4, ε = 0, |S| = 100, |Si| = 600)should, therefore, be onservative in using tolerant sores.5.1.2 Planted MotifsWe will now address the ase where we plant motifs in the input sequenes. As we mentionedearlier, all data sets have 100 sequenes with 600 nuleotides. Tab. 5.1 summarizes the aseswe shall onsider, indiating whih motifs were planted and the perentage of input sequenesontaining the planted motifs. The motifs were planted only one in eah of the randomlyseleted input sequenes.For eah ase we indiate what is to be expeted and we present a general desription ofthe output of our method. In all ases only parameters λ = 4 and ε = 0 are used.
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Figure 5.7: Number of Elements, Number of Bilusters and Average Biluster Volume per SoreLevel in 3 syntheti data sets without planted motifs (λ = 4, ε = 1, |S| = 100, |Si| = 600)Case Motif(s) % of Input SequenesA AAAAA 80%B AAAAn5TTTT 80%C AAAATn20TTTTA 80%D AAAATn5TTTTAn5CCCCT 80%E AAAAA 40%AAAATn20TTTTA 30%AAAATn5TTTTAn5CCCCT 30%Table 5.1: Motifs planted in syntheti data sets and the perentage of sequenes ontainingthem for ases A, B, C, D and E



5.1. SYNTHETIC DATA 49Case AIn this ase we have planted the motif AAAAA whih generates the following on�gurations:
(AAAA, AAAA, 1) and (AAAA, AAAA,−1). These on�gurations are assoiated with a single diag-onal element in the matrix of o-ourrenes (one they prove to be most ommon on�g-urations). We expet to extrat the biluster B({i}, {i}) where i is the index of the 4-mer
AAAA.Fig. 5.8 shows the relevant results of the appliation of our method to ase A. The plotsare almost idential to the ones obtained for the random data sets with no planted motifs,shown in Fig. 5.6. The di�erene lies in the fat that bilusters were found above sore level62 and the existene of some small perturbations around level 60. The introdution of ourmotif in the otherwise random sequenes hanges the proportion of nuleotides and, therefore,the likelihood of ourrene of some motifs. Tab. 5.2 shows the top 5 soring motifs identi�edwith our method. The assembly of the motifs from the identi�ed bilusters was performed byinspetion. # Motif Sore1 AAAAA 852 TGAAA 643 AAAAG 634 GAAAA 625 AAAAC 61... ... ...4271Table 5.2: Top soring motifs inferred from the top soring bilusters for ase AAs expeted, the top soring motif is the one whih was planted. The following motifshave learly bene�ted from the inreased proportion of A's in the data set but still soresigni�antly less than the planted motif and not muh higher than the top soring motif foundin data sets with no planted motifs. It is also interesting to note that the planted motif soreshigher than what is warranted by the number of sequenes in whih it was planted. This isalso not surprising sine the motif in itself is very likely to our in a random sequene of
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Figure 5.8: Number of Elements, Number of Bilusters and Average Biluster Volume perSore Level for ase A (λ = 4, ε = 0, |S| = 100, |Si| = 600)the spei�ed length. The planted ourrenes and the spurious ourrenes have ombined toyield a sore of 85.Case BIn this ase we have planted the motif AAAAn5TTTT. It generates the following on�gurations:
(AAAA, TTTT, 8) and (TTTT, AAAA,−8). Fig. 5.9 summarizes the results obtained for this ase.The plots shown for this ase are quite similar to those obtained in the previous ase,as expeted. Likewise, the top soring motif is expeted to be the planted motif and thefollowing are likely to be simple motifs derived from the two omponents of the omplex motifthat was plaed in 80 of the input sequenes. Tab. 5.3 shows the top soring motifs, on�rmingour preditions. Unlike the previous ase, the sore of the planted motif was not in�ated by
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Figure 5.9: Number of Elements, Number of Bilusters and Average Biluster Volume perSore Level for ase B (λ = 4, ε = 0, |S| = 100, |Si| = 600)pre-existing ourrenes in the random sequenes. This is due to the fat that a motif withnon-ontiguous omponents is very unlikely to our by hane, as we have mentioned inprevious hapters.Case CThe planted motif for ase C is AAAATn21TTTTA, whih generates the following set of on�gu-rations: (AAAA, AAAT, 1), (AAAT, AAAA,−1), (TTTT, TTTA, 1), (TTTA, TTTT,−1), (AAAA, TTTT, 24),
(TTTT, AAAT,−24), (AAAA, TTTA, 25), (TTTA, AAAA,−25), (AAAT, TTTT, 23), (TTTT, AAAT,−23),
(AAAT, TTTA, 24) and (TTTA, AAAT,−24). Fig. 5.10 shows the plots obtained for this ase. It isinteresting to note the peak on the plot of the average biluster volume per sore level thatappears at level 80. There is only one biluster at this level and it refers to the planted motif



52 CHAPTER 5. RESULTS# Motif Sore1 AAAAn5TTTT 802 TTTTC 643 AAAAC 634 CAAAA 635 AAAAT 62... ... ...4272Table 5.3: Top soring motifs inferred from the top soring bilusters for ase B# Motif Sore1 AAAAT 902 TTTTA 903 AAAATn20TTTTA 804 GAAAA 655 AAATG 63... ... ...4291Table 5.4: Top soring motifs inferred from the top soring bilusters for ase Cwhih indues a biluster of volume 12 (orresponding to the number of on�gurations listedabove).Contrarily to previous ases, the top soring motif is not the planted motif, as shown inTab. 5.4. Eah omponent of the planted omplex motif has ombined with random our-renes of idential 5-mers to obtain a sore higher than that of the planted motif.Case DIn ase D, a omplex motif with three omponents was planted in the input sequenes:
AAAATn5TTTTAn5CCCCT. This motif generates as many as 30 on�gurations of pairs of 4-mers. Fig. 5.11 shows the relevant information for this ase. Just like in ase C, the planted
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Figure 5.10: Number of Elements, Number of Bilusters and Average Biluster Volume perSore Level for ase C (λ = 4, ε = 0, |S| = 100, |Si| = 600)motif is listed among the top soring motifs, as an be seen in Tab. 5.5 and eah omponentsores higher than the planted motif due to the ontribution of spurious ourrenes.Case EThis ase is more interesting beause the motifs planted in ases B, C and D have all beenplanted in this data set. Furthermore, eah of these motifs was planted in muh less inputsequenes. Fig. 5.12 summarizes the results for ase E. These plots are unsurprisingly muhdi�erent from the ones shown in the previous ases, showing a peak around sore level 30 forthe average biluster volume plot.Tab. 5.6 shows a portion of the list of motifs inferred from the identi�ed bilusters. The topsoring motifs are the result of the ontribution of omponents of the planted omplex motifs
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Figure 5.11: Number of Elements, Number of Bilusters and Average Biluster Volume perSore Level for ase D (λ = 4, ε = 0, |S| = 100, |Si| = 600)# Motif Sore1 AAAAT 902 CCCCT 893 TTTTA 864 AAAATn5TTTTAn5CCCCT 805 ACCCC 66... ... ...4296Table 5.5: Top soring motifs inferred from the top soring bilusters for ase D
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Figure 5.12: Number of Elements, Number of Bilusters and Average Biluster Volume perSore Level for ase E (λ = 4, ε = 0, |S| = 100, |Si| = 600)with spurious ourrenes, not unlike we have seen in previous ases. What is interestingto observe are the results onerning the planted motifs. The simple motif that was planted(AAAAA) was not reovered in isolation. Instead, it appears merged with spurious ourrenesof other on�gurations. This is not surprising sine we planted the simple motif in only afew sequenes (40), muh less than the sore level below whih many spurious ourrenes of
5-mers start to be ommon, whih is around sore level 55, as shown in Fig. 5.6.Motifs listed in ranks 1010 through 1015 were the only omplex motifs reovered by ourmethod. They all resemble the planted omplex motifs but none mathes any of them exatly.This is, one again, not surprising. If we inspet motif in rank 1015 it is almost an exatsuperposition of the two omplex motifs that were planted in the input sequenes. All theother motifs are simply subsets of the on�gurations indued by our omplex motifs. The



56 CHAPTER 5. RESULTS# Motif Sore1 AAAAT 752 TTTTA 753 AAAAAT 704 AAAAAC 665 CAAAA 63... ... ...1010 AAATn5TTTT 321011 AAAATn5TTTTn6CCCC 311012 AAAAn6TTTTn6CCCCT 311013 AAAATn5TTTTAn11TTTA 311014 AAAAn6TTTTAn6CCCTn1TTTA 311015 AAAATn5TTTTAn5CCCCTn1TTTA 30... ... ...4260Table 5.6: Top soring motifs inferred from the top soring bilusters for ase Eexplanation for this result is straightforward. The two omplex motifs that were plantedin the data set were quite similar and indued almost idential on�gurations, exept forthose referring to the pairs (AAAA, TTTT), (AAAA, TTTA), (AAAT, TTTT) and (AAAT, TTTA) whihdi�ered in their relative distanes. A spurious ourrene of one of these on�gurations inone of the input sequenes was su�ient to deprive the other of its status of most ommonon�guration. In this ase, on�gurations (AAAA, TTTT, 24), (TTTT, AAAA,−24), (AAAT, TTTT, 23)and (TTTT, AAAT,−23) were the ones whih got disarded making it impossible to fully reoverthe planted motif AAAATn20TTTTA. On the other hand, the other omplex motif was fullyreovered. The motif that is listed in rank 1015 was inferred by inspetion of the identi�edbiluster and what is shown does not onvey all the information that the biluster o�ers.It is true that many on�gurations that pertain to motif AAAATn20TTTTA are interwinedwith those generated by AAAATn5TTTTAn5CCCCT but it is still possible to disriminate betweenthe two. We deided to present the reonstruted motif in this way beause both on�gurations
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(AAAA, TTTA, 10) and (AAAA, TTTT, 25) are assoiated with the biluster, but, for instane, thereis only a pair of on�gurations involving 4-mers TTTA and CCCC whih are the ones induedby AAAATn5TTTTAn5CCCCT. This allows us to suspet that di�erent signals have ombined inthis biluster and we an, in this ase, easily distinguish the two.This ase has illustrated some of the more omplex situations that we an fae using theproposed method. It is, however, a very arti�ial situation beause the planted motifs arequite similar. These situations are unlikely to our with real data sets if one hooses anappropriate value for λ.5.2 Biologial DataAs we said previously, syntheti data sets are onvenient for ontrolled tests but they fall shortof being a reliable model of regulatory regions. In this setion we present the results of theappliation of our method to a real data set [57℄. This data set is omposed of various σ54-dependent promoter sequenes of Esherihia oli. The data set is omposed of 69 sequeneswith an average length of 580 nuleotides.We begin by analyzing the plots obtained for the number of elements, bilusters andaverage biluster volume per sore level by applying our method using λ = 4 and ε = 0 shownin Fig. 5.13. These plots are signi�antly di�erent from the ones obtained for the synthetidata. There are no distinguishable loal maxima whih suggests that these sequenes are notrandom as we have already argued.In Tab. 5.7 we list a portion of the list of motifs assembled by inspetion of the identi�edbilusters. The omplex motifs that are listed onsist of the only omplex motifs identi�edabove sore level 20. In [57℄ a onsensus sequene for the promoter of these sequenes wasobtained by a ombination of geneti evidene and putative promoters reported in the lit-erature based on sequene similarity. The onsensus sequene reported by the authors was:
NNNNmrNrYTGGCACGNNNNTTGCWNNwNNNNN where R stands for purines, Y for pyrimidines, W for Aor T and, as usual, N stands for any nuleotide.The omplex motifs obtained using our method are in absolute aordane with the on-sensus sequenes reported by the authors.As we disussed in previous hapters, our method is not guaranteed to �nd all interestingmotifs due to its heuristi nature and is also vulnerable to reporting false positives. It should,
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Figure 5.13: Number of Elements, Number of Bilusters and Average Biluster Volume perSore Level for the σ54 data set (λ = 4, ε = 0, |S| = 69, average|Si| = 580)therefore, rely on a motif �nder to validate its output. The bilusters identi�ed in this asesuggest the existene of a omplex motif with two omponents separated by a gap of 5-7 nuleotides. If we use the SMILE algorithm [5℄ and ask for all omplex motifs with a�rst omponent between 4 and 6 nuleotides long and a seond omponent between 4 and 5nuleotides long separated by a gap between 5 and 7 nuleotides long ourring in at least 20sequenes the algorithm reports one motif only:
TGGC_TTGCTThis suggests that our method is arti�ially in�ating the sores of the bilusters beause itdoes not perform a ross-hek of the sequenes in whih eah on�guration ours. If we lowerthe number of sequenes we require the motif to our in we reover all the motifs reportedby our method (not shown).



5.2. BIOLOGICAL DATA 59# Motif Sore1 CTGGC 542 TGGCA 533 GGCAC 494 TTGCT 425 CCCGC 40... ... ...40 TGGCn7TTGC 35... ... ...125 TGGCAn6TTGC 30... ... ...270 TGGCAn6TTGCT 25... ... ...537 GGCACn5TTGC 20... ... ...1887Table 5.7: Top soring motifs inferred from the top soring bilusters for the σ54 data setOther algorithms, like MEME [23℄, are, in priniple, able to �nd interesting features indata sets. We have used MEME to analyze this data set. A ommon way to present resultsreported by MEME is a multi-level onsensus sequene. The nuleotides in the top row arethe most likely for eah position, and nuleotides at lower rows are dereasingly probable. Themulti-level onsensus sequenes obtained with MEME for the σ54 data set was the following:G C T G G C A C G G C T C T T G C TT T T A C G C G C AThe multi-level onsensus sequene reported by MEME is in aordane with both thedoumented onsensus sequene and the motifs extrated using the method proposed in thisthesis. It is not so lear, however, in eluidating the omplex struture of the motif whih isthe main goal of our approah.
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Chapter 6
Conlusions and Future Work
In this thesis we have presented an e�etive method to guide modern ombinatorial motif�nders. We have seen that, up to a point, our method is apable of reporting the relevantmotifs by itself. We have demonstrated this ability in the results presented in hapter 5.We have already disussed the shortomings of our approah whih refer to situationswhere the method is unable to detet all the important on�gurations neessary to assemblea motif present in the input sequenes. We argue that most of these situations are unlikelyto our in pratie and that this method stands as a useful pratial tool to guide the searhfor motifs, espeially those exhibiting a omplex nature.Notwithstanding the fat that most of the bilusters identi�ed by our method suggestthe presene of motifs whih an easily be assembled by inspetion of the on�gurationsassoiated with the biluster elements, we still lak an automated proedure to assemble thesemotifs. This is a task that an be hallenging in some speial ases where multiple motifsend up grouped in the same biluster or when some on�gurations are masked due to signalinterferene. It is, however, an interesting and useful proedure that deserves attention.Another issue is the ability to aurately predit the exat number of input sequeneswhere the on�gurations grouped in a biluster simultaneously our. As we have disussedin previous hapters the sore level at whih a biluster is identi�ed is an upper bound ofthe simultaneous ourrenes of all assoiated on�gurations. Reporting the exat number ofsequenes involves keeping trak of whih input sequenes eah on�guration ours in. Thisimprovement would also be useful to detet and disard spurious bilusters that result fromgrouping on�gurations that never our in the same input sequenes.61



62 CHAPTER 6. CONCLUSIONS AND FUTURE WORKAnother important improvement to our method would be o�ering support for degeneratemotifs, i.e., the ability to ope with nuleotide substitutions as is the ase with many modernmotif �nders. This is not a trivial matter and involves, besides rede�ning most of the oneptsintrodued in hapter 4, onsidering not only o-ourrenes of pairs of λ-mers present in theinput sequenes but also those of λ-mers at some pre-de�ned Hamming distane of the former.We have mentioned in hapter 4 that the number of bilusters that our bilustering al-gorithm is able to identify (|L(S)|2) is muh less than the theoretial maximum number ofbilusters (3 |L(S)|
3 ). This is due to the fat that the algorithm performs a greedy searh, missingan undetermined part of the solution. We have argued that this an be mitigated by the fatthat, in pratie, the generated matrix of o-ourrenes is sparse at eah level onsidered. Itwould be interesting, however, to ompare the results obtained using this algorithm with an-other performing an exhaustive searh. It may prove worthwhile to implement a randomizedversion of the algorithm whereby rows/olumns would be randomly targeted for addition, inonjuntion with a beam searh approah whih would ombine, at eah level, the bilustersobtained by onsidering initial bilusters in di�erent orderings.Finally, it is lear from the results presented in hapter 5 that many of the identi�edbilusters are due to random ourrenes of short simple motifs. A user of our method wouldgreatly bene�t from a statistial signi�ane assessment of the reported bilusters. Despitethe fat that listing the bilusters by dereasing sore values already onstitutes a signi�anthelp in disriminating the output it is insu�ient to isolate interesting motifs ourring in fewinput sequenes.
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