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Abstra
t
In this thesis we propose a method to estimate sear
h parameters for modern 
ombinatorialmotif �nders, with an emphasis on the identi�
ation of 
omplex motifs. Currently available
ombinatorial algorithms have proved to be highly e�
ient in exhaustively enumerating mo-tifs whi
h ful�ll 
ertain extra
tion 
riteria. Addressing the problem of identifying 
omplexmotifs is extremely important, not only be
ause these motifs 
an a

urately model biologi
alphenomena but be
ause its extra
tion is highly dependent upon the appropriate sele
tion ofnumerous sear
h parameters.Our method relies on a matrix of 
o-o

urren
es that, for ea
h pair of small sequen
es oflength λ, stores the number of input sequen
es in whi
h the most 
ommon 
on�guration ofthese small sequen
es o

urs in. Using bi
lustering te
hniques it is possible to group elementsof the matrix to form larger, possibly 
omplex, motifs.The proposed approa
h is not guaranteed to �nd all interesting 
orrelations in the inputsequen
es. However, it allows the e�
ient identi�
ation of unusual features referring to motifsthat would otherwise require an exhaustive sear
h in the parameter spa
e to be extra
ted.This is parti
ularly important when sear
hing for 
omplex motifs.The experimental results show that this approa
h 
an e�e
tively identify a set of importantmotif features that 
an guide the spe
i�
ation of sear
h parameters for modern motif �nders.Keywords: Promoter predi
tion, Combinatorial algorithms, Motif extra
tion, Complex mo-tifs, Bi
lustering te
hniques, Matrix of 
o-o

urren
es
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Resumo
Nesta tese é proposto um método para estimar os parâmetros de pesquisa para os modernosalgoritmos 
ombinatórios de extra
ção de motivos, 
om ênfase na identi�
ação de motivos
omplexos. Os algoritmos 
ombinatórios disponíveis a
tualmente demonstraram ser muitoe�
ientes na tarefa de identi�
ar motivos que 
umpram determinados 
ritérios de extra
ção.A abordagem do problema de identi�
ar motivos 
omplexos é de extrema importân
ia, não sóporque estes motivos são 
apazes de modelar 
om exa
tidão os fenómenos biológi
os, mas tam-bém pelo fa
to da sua extra
ção estar muito dependente da sele
ção adequada de numerososparâmetros de pesquisa.O método proposto utiliza uma matriz de 
o-o
orrên
ias que, para 
ada par de pequenassequên
ias de tamanho λ, guarda o número de sequên
ias de entrada em que a 
on�guraçãomais 
omum destas pequenas sequên
ias o
orre. Utilizando té
ni
as de bi
lustering é pos-sível agrupar elementos desta matriz por forma a identi�
ar motivos maiores, possivelmente
omplexos.A abordagem proposta não garante a identi�
ação de todas as 
orrelações interessantesnas sequên
ias de entrada. No entanto, possibilita a identi�
ação e�
iente de padrões pou
o
omuns que indi
am a presença de motivos que de outro modo ne
essitariam de uma pro
uraexaustiva no espaço de parâmetros para poderem ser extraídos. Isto é parti
ularmente impor-tante no 
ontexto da pro
ura de motivos 
omplexos.Os resultados experimentais mostram que esta abordagem permite identi�
ar e�
iente-mente um 
onjunto de 
ara
terísti
as importantes de motivos que pode ser usado para guiara espe
i�
ação de parâmetros de pesquisa para algoritmos modernos de extra
ção de motivos.Palavras 
have: Predição de promotores, Algoritmos 
ombinatórios, Extra
ção de motivos,Motivos 
omplexos, Té
ni
as de bi
lustering, Matriz de 
o-o
orrên
iasv



vi



Resumo Alargado
O genoma de um organismo pode ser visto 
omo uma sequên
ia de DNA de�nida sobre umalfabeto de quatro nu
leótidos Σ = {A,T,G,C}. Algumas regiões desta sequên
ia 
orrespon-dem a genes e são, por isso, referidas 
omo regiões 
odi�
antes. Cada gene 
odi�
a, em regra,uma proteína. As proteínas são polímeros de aminoá
idos e estão envolvidas em prati
amentetodas as a
tividades 
elulares podendo ter uma função estrutural, 
onstituíndo, por exemplo,a parede 
elular, ou uma função 
atalíti
a, assumindo o papel de enzimas no metabolismo da
élula.O dogma 
entral da biologia estabele
e um per
urso para o �uxo de informação genéti
a:DNA → RNA → proteína. De a
ordo 
om este prin
ípio, o RNA é sintetizado a partirde um molde de DNA através de um pro
esso designado de trans
rição e as proteínas sãosintetizadas a partir do RNA num pro
esso designado de tradução. As molé
ulas de RNAsão, assim, intermediárias na expressão da informação genéti
a.Os genes de um organismo não são todos expressos simultaneamente. A sua a
tivação de-pende das ne
essidades metabóli
as da 
élula e está sujeita a vários me
anismos de regulação.Um dos mais importantes me
anismos de regulação da expressão dos genes é a regulação aonível da trans
rição. Este me
anismo de regulação é mediado por proteínas designadas defa
tores de trans
rição que re
onhe
em espe
i�
amente 
ertas sequên
ias de nu
leótidos lo
al-izadas, geralmente, a montante dos genes na sequên
ia de DNA em regiões denominadas deregiões promotoras. De entre sequên
ias de nu
leótidos re
onhe
idas pelos fa
tores de tran-s
rição podemos distinguir sequên
ias 
ontíguas designadas de motivos simples e sequên
iasinterrompidas por espaçamentos de nu
leótidos pou
o importantes para a ligação dos fa
toresde trans
rição designadas de motivos 
omplexos. A identi�
ação destes lo
ais de ligação éuma tarefa fundamental na 
ompreensão dos me
anismos de regulação da expressão géni
a.Até muito re
entemente, todos os algoritmos para identi�
ar lo
ais de ligação dos fa
toresvii



viiide trans
rição extraíam apenas motivos simples, traduzindo-se na pesquisa de sequên
ias 
on-tíguas de nu
leótidos (
omponentes) 
omuns a várias regiões promotoras, a menos de algumassubstituições de nu
leótidos.A
tualmente, a importân
ia da identi�
ação de motivos 
omplexos é 
res
entemente re-
onhe
ida. Existem várias vantagens em privilegiar a pesquisa de motivos 
omplexos. Por umlado, alguns fa
tores de trans
rição têm uma estrutura intrinse
amente 
omplexa no sentidoem que re
onhe
em sequên
ias não-
ontíguas de nu
leótidos e, nestes 
asos, os motivos 
om-plexos adaptam-se melhor à modelação dos lo
ais de ligação. A ligação 
ooperativa de váriosfa
tores de trans
rição à região promotora também pare
e envolver o re
onhe
imento de váriassequên
ias 
ontíguas de nu
leótidos separadas por espaçamentos mais ou menos 
onstantes.Por outro lado, a imposição de espaçamentos entre sequên
ias fa
ilita a tarefa de distinguirentre motivos biologi
amente signi�
ativos para o pro
esso de trans
rição de motivos queestão presentes nas várias regiões promotoras mas que não são importantes neste 
ontexto.Adi
ionalmente, os motivos 
omplexos podem ser usados para modelar sequên
ias 
ontíguasde nu
leótidos 
om regiões 
entrais pou
o 
onservadas nas várias regiões promotoras.Vários algoritmos a
tuais de pesquisa de motivos já suportam a extra
ção de motivos 
om-plexos muito embora 
om várias limitações. A maior parte 
onsidera motivos 
omplexos 
on-stituídos por duas sequên
ias 
ontíguas de nu
leótidos 
om um espaçamento �xo entre si o quelimita severamente o tipo de motivos 
omplexos passíveis de serem identi�
ados. Propostasmais re
entes eliminaram a ne
essidade de 
onsiderar espaçamentos �xos mas 
ontinuam apermitir apenas a extra
ção de motivos 
omplexos 
om dois 
omponentes. Adi
ionalmente,estes algoritmos tendem a ser pou
o e�
ientes porque ou enumeram todos os motivos 
om-plexos possíveis [1℄ ou porque envolvem um pré-pro
essamento das sequên
ias de entrada [2�4℄.Consequentemente, estes métodos estão limitados a 
onsiderar motivos relativamente 
urtose uma pequena gama de valores possíveis para as distân
ias entre 
ada 
omponente.A
tualmente, tanto quanto é possível apurar, existe apenas um grupo de algoritmos que
onsegue e�
ientemente identi�
ar motivos 
omplexos 
om um número arbitrário de 
om-ponentes separados por um espaçamento de tamanho variável [5, 6℄. Adi
ionalmente, estesalgoritmos in
orporam a possibilidade de 
onsiderar substituições de nu
leótidos nos vários
omponentes do motivo 
omplexo.Estes algoritmos têm, no entanto, uma desvantagem que diz respeito ao número de parâmet-



ixros que é ne
essário espe
i�
ar. Para efe
tuar uma pesquisa de motivos 
omplexos é ne
essárioindi
ar o número de 
omponentes que se pretende extrair, o tamanho mínimo e máximo de
ada 
omponente, bem 
omo o espaçamento mínimo e máximo entre 
ada 
omponente. Éne
essário ainda indi
ar a per
entagem de regiões promotoras em que se exige que o motivoo
orra para que seja reportado.Este tese tem 
omo prin
ipal obje
tivo o desenvolvimento de um método 
apaz de estimaros parâmetros de pesquisa para os algoritmos 
ombinatórios deste tipo. O método propostopro
ura identi�
ar 
orrelações nas sequên
ias de entrada que possam denun
iar a presença deum motivo 
omplexo 
omum a várias regiões promotoras.O método que é apresentado faz uso de uma matriz de 
o-o
orrên
ias. Cada elemento destamatriz indi
a o número de sequên
ias de entrada em que a 
on�guração mais 
omum entredois pares de sequên
ias de tamanho λ o
orre. Usando té
ni
as de bi
lustering, são agrupadoselementos desta matriz de forma a 
onstruir motivos, eventualmente motivos 
omplexos.Os resultados experimentais mostram que esta abordagem permite identi�
ar e�
iente-mente um 
onjunto de 
ara
terísti
as importantes de motivos que pode ser usado para guiara espe
i�
ação de parâmetros de pesquisa para algoritmos modernos de extra
ção de motivos.
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Chapter 1
Introdu
tion
1.1 ContextThe resear
h e�ort underlying this thesis was 
arried out at the ALGorithms for Simulationand Optimization Group (ALGOS Group) of INESC-ID, Lisboa. This work bene�ts from the
ontributions of many of the ongoing proje
ts in the ALGOS Group (in the area of data miningand bioinformati
s) and it is part of a growing e�ort to embra
e the �eld of 
omputationalbiology.This work was partially supported by the Proje
t BIOGRID POSI/SRI/47778/2002.1.2 AimsIn re
ent years, espe
ially after the 
ompletion of genome sequen
ing proje
ts for variousorganisms, there has been a growing interest in the study of regulation and gene expressionme
hanisms. The amount of data now available not only 
on
erning genome sequen
es butalso gene expression pro�les makes it unfeasible to pursue a manual analysis, and 
alls forsome sort of automati
 pro
essing. The study of biologi
al systems requires 
omputationalapproa
hes not only in the analysis of biologi
al data but also in guiding laboratory resear
h.In this 
ontext, bioinformati
s tools have be
ome more and more 
entral to the a
tivity ofbiologists.Despite the remarkable su

ess of these tools in some areas of appli
ation like gene �nding,sequen
e alignment, et
, there are still problems for whi
h no signi�
ant results have been1



2 CHAPTER 1. INTRODUCTIONa
hieved. Notably, the identi�
ation of biologi
ally meaningful nu
leotide sequen
es in 
is-regulatory regions remains an open problem.The identi�
ation and 
hara
terization of regulatory regions is a fundamental task sin
ethe 
onditions that determine the a
tivation and trans
ription of genes depend on nu
leotidesequen
es found therein, referred to as motifs. Many approa
hes have been proposed and one
an �nd a panoply of published papers des
ribing novel algorithms to address the problem.Currently available methods 
an roughly be 
lassi�ed in two main 
lasses: probabilisti
and 
ombinatorial. Other approa
hes have also been tried in
luding methods using neuralnetworks, geneti
 programming, et
, but with un
lear results.Probabilisti
 methods have the advantage of requiring few sear
h parameters but rely onprobabilisti
 models of the regulatory regions whi
h 
an be very sensitive with respe
t to small
hanges in the input data. Some of these methods also make simplifying assumptions aboutthe nature and abundan
e of the motifs to be extra
ted.Combinatorial methods tend to be exhaustive but are left with two main problems: iden-tifying biologi
ally relevant results in the output and determining the appropriate extra
tionparameters. For these methods, the problem of determining what portion of the output 
or-responds to a biologi
ally signi�
ant result has been addressed mostly through the use ofstatisti
al te
hniques and biologi
al reasoning and it is a 
hallenge in its own right. The prob-lem of determining the appropriate extra
tion parameters is one of the 
entral goals of thisthesis and 
an only be understood if we examine the way 
urrent algorithms operate.A key feature of modern motif �nders is the ability to extra
t 
omplex motifs, i.e., non-
ontiguous nu
leotide sequen
es. The advantages of 
onsidering 
omplex motifs are twofold.On the one hand they are good representations of some instan
es of the underlying biologi
alphenomena and on the other hand they are easier to extra
t sin
e the distan
e between
ontiguous 
omponents 
an be a restri
tion that �lters spurious output.Currently there is, to the best of our knowledge, only one group of algorithms that allow theextra
tion of 
omplex motifs with an arbitrary number of 
omponents (SMILE/RISO [5,6℄).The SMILE/RISO algorithms are 
ombinatorial approa
hes that prove to be e�e
tive ande�
ient when the appropriate extra
tion parameters are reasonably bound.The main goal of this thesis is to devise an e�
ient method to adjust extra
tion pa-rameters for modern motif �nders, parti
ularly SMILE/RISO, using bi
lustering te
hniques.



1.3. CLAIM OF CONTRIBUTIONS 3Furthermore, this method has been validated both with syntheti
 and real biologi
al data.1.3 Claim of 
ontributionsIn this thesis we propose a method to adjust extra
tion parameters for modern motif �nders,with an emphasis on the extra
tion of 
omplex motifs. This method relies on a bi
lusteringalgorithm that operates on a matrix of 
o-o

urren
es of small sequen
es. The performan
eof this method is independent of the 
omposite stru
ture of the motifs being sought, makingfew assumptions about their 
hara
teristi
s.1.4 Layout of the thesisIn the next 
hapter we introdu
e the essential 
on
epts required to understand the underlyingbiologi
al problem.In 
hapter 3 we 
onsider the 
omputational problem of extra
ting motifs and dis
uss the
urrently available methods.In 
hapter 4 we present our proposal to address the problem of parameter spe
i�
ationand introdu
e the 
on
ept of diagonally-pun
tured bi
luster. An algorithm inspired by bi
lus-tering te
hniques is des
ribed alongside the presentation of an algorithm to generate a matrixof 
o-o

urren
es.In 
hapter 5 we present the experimental results of our method with both syntheti
 andreal data.In 
hapter 6 we dis
uss the approa
h we have taken and the results that have beenobtained while simultaneously presenting a roadmap for future resear
h.In order to fa
ilitate the reading of this thesis we also present a glossary with key terms ofmole
ular biology and an index of notation that we have introdu
ed to formalize our approa
h.1.5 ConventionsIn this thesis we will use the 
ommon 
onventions adopted in the 
omputer s
ien
e 
ommunity,with one notable ex
eption. Many authors 
oming from the realm of 
omputer s
ien
e andmathemati
s and who have subsequently embra
ed the study of life s
ien
es (and those who



4 CHAPTER 1. INTRODUCTIONdid the opposite migration) giving birth to the multidis
iplinary �eld of 
omputational biologysometimes struggle with matters of terminology. In parti
ular, the terms sequen
e and sub-sequen
e are many times used in bioinformati
s to refer to the 
on
epts of string and sub-stringwhi
h are well known in the �eld of 
omputer s
ien
e. We will adopt the terminology usedin the 
omputational biology 
ommunity and we shall always refer to sequen
es and sub-sequen
es when we mean string and sub-string. Furthermore, we will use Σ to denote thealphabet over whi
h all the sequen
es are de�ned. Throughout this thesis we will alwaysassume that Σ = {A,T,G,C} but all assertions will be made to an unspe
i�ed Σ alphabet,unless otherwise indi
ated.



Chapter 2
Fundamentals of mole
ular biology
In this 
hapter we present the fundamental 
on
epts required to understand the biologi
alproblem that motivates the 
omputational methods dis
ussed in this thesis.2.1 Stru
ture of nu
lei
 a
idsThe �eld of mole
ular biology greatly bene�ted from the dis
overy of the three-dimensionalstru
ture of DNA by Watson and Cri
k in 1953 [7℄. The DNA mole
ule, present in all living
ells, is the 
arrier of geneti
 information whi
h is ne
essary to 
ontrol all 
ellular a
tivities.This information is passed down to ea
h new generation almost �awlessly. DNA is 
omposedof two strands of nu
leotides forming a double helix (Fig. 2.1). A nu
leotide is a mole
uleformed by a pentose (deoxyribose in DNA), a phosphate group and a nitrogenous base. Thereare four su
h nu
leotides found in DNA, di�ering only on their nitrogenous base: Adenine(A), Guanine (G), Cytosine (C) and Thymine (T).The pentose sugar-phosphate links form the ba
kbone of the DNA mole
ule and are lo
atedin the exterior of the double helix. The two strands of DNA are kept together by hydrogenbonds linking ea
h pair of bases. In a 
omplete helix, Adenine always pairs with Thymineand Cytosine always pairs with Guanine. Be
ause of this, the two strands are said to be
omplementary (Fig. 2.2).The information 
ontained in DNA is represented by the spe
i�
 sequen
e of nu
leotidesin either strand (the sequen
e of nu
leotides in the 
omplementary strand 
an be inferred
onsidering the base-pairing s
heme dis
ussed earlier). It is, in fa
t, a digital repository of5
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Figure 2.1: DNA double-helix stru
ture.

Figure 2.2: Nu
leotides and the stru
ture of DNA
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Figure 2.3: RNA versus DNAinformation 
onsisting of a text written with a four-letters alphabet.Although DNA is stru
turally identi
al in all living 
ells, in prokaryotes 
onsists of a single
ir
ular mole
ule whereas in eukaryotes is found asso
iated with several proteins to form a
omplex named 
hromatin, whi
h is lo
ated in the nu
leus [8℄.However, not all regions of the DNA mole
ule seem to 
arry information. Those regionswhi
h do 
arry information are named genes and are said to be 
oding regions. Genes 
ontainthe instru
tions ne
essary to dire
t biologi
al a
tivities in the 
ell and a
t by determining thestru
ture of proteins. Genes are expressed as �nal produ
ts that generally 
onsist of proteinswhi
h 
an serve di�erent purposes: they 
an form part of the 
ell wall, a
t as 
atalyti
 
om-ponents (enzymes) or in�uen
e the expression of genes and are, therefore, a
tors in virtuallyall 
ellular a
tivities. The non
oding regions betweens genes are 
alled spa
er sequen
es. Ineukaryoti
 
ells it is 
ommon to �nd genes whi
h 
ontain large amounts of non
oding regions.In these genes, 
oding regions named exons are separated by non
oding regions named introns.RNA is another nu
lei
 a
id related to DNA. There are some important di�eren
es betweenthese two mole
ules. Firstly, unlike DNA, RNA is a single stranded mole
ule. The pentosefound in RNA is ribose and not deoxyribose (then
e the name of the mole
ules) and the
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Figure 2.4: S
hemati
 representation of the pro
esses involved in gene expression in prokary-otes and eukaryotesnu
leotide Thymine is substituted by Ura
il (U) (Fig. 2.3). Despite being a single strandedmole
ule, RNA sometimes presents loops where homologous portions of the mole
ule self-hybridize. Neither the di�erent sugar nor the base substitution alter the base-pairing s
hemefound in DNA. Interestingly, in livings 
ells, one 
an �nd always larger quantities of RNAthan of DNA. In fa
t, the amount of RNA varies with 
hanging metaboli
 
onditions whereasthe amount of DNA is 
onstant (in 
ells whi
h are not in the pro
ess of 
ell division). This is
onsistent with the fa
t that RNA is a fundamental intermediary in the expression of geneti
information as we will see below.2.2 Gene expressionThe 
entral dogma of mole
ular biology [8℄ establishes a pathway for the �ow of geneti
information: DNA → RNA → protein, i.e., from the DNA repository to the �nal produ
tsof gene expression. The �rst pro
ess in whi
h RNA mole
ules are synthesized from a DNAtemplate is 
alled trans
ription. The RNA mole
ule thus obtained is 
alled Messenger RNA(mRNA). The subsequent pro
ess in whi
h mRNA is used as a template for protein synthesisis 
alled translation.In prokaryotes, trans
ription and translation o

ur almost simultaneously whereas in eu-
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GUA GCA GAA GGA

GUG GCG GAG GGGFigure 2.5: The universal geneti
 
odekaryotes the two pro
esses take pla
e in di�erent parts of the 
ell. In these organisms thetransition from trans
ription to translation involves the migration of mRNA from the nu
leusto the 
ytosol alongside with 
ertain modi�
ations to the mRNA mole
ule in a pro
ess 
alledmaturation. In Fig. 2.4 we 
an see a s
hemati
 representation of the di�erent pro
essesinvolved in gene expression for both prokaryotes and eukaryotes.The typi
al produ
ts of gene expression, proteins, 
onsist of sequen
es of aminoa
ids.Proteins, as we mentioned earlier, have a 
entral role in all 
ellular a
tivities and their fun
tiondepends on their three-dimensional stru
ture whi
h, in turn, is derived from the spe
i�
 linearordering of their 
onstituent aminoa
ids. The substitution of a single aminoa
id in the 
hain
an 
hange both the stru
ture and the fun
tion of the mole
ule. Sin
e proteins are synthesizedfrom an mRNA template it is not suprising to learn that the information about the sequen
eof aminoa
ids is represented in the sequen
e of nu
leotides of the nu
lei
 a
id. In fa
t, ea
hgroup of three nu
leotides (
odons or triplets) represents a parti
ular aminoa
id ex
ept for theso-
alled stop 
odons whi
h signal the end of protein synthesis. There is yet another spe
ialtriplet 
alled start 
odon whi
h, besides signalling the start of protein synthesis, also 
odesfor an aminoa
id, usually methionine.The 
orresponden
e between 
odons and aminoa
ids, whi
h is virtually identi
al in allliving 
ells, is 
alled the geneti
 
ode. Cells use 20 di�erent aminoa
ids to build their proteinsand there are 43 = 64 di�erent 
ombinations of three nu
leotides. In fa
t, several di�erent
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Figure 2.6: S
hemati
 representation of regulation in prokaryotestriplets are used to 
ode for the same aminoa
id, although no triplet is used to 
ode for morethan one aminoa
id (Fig. 2.5). For this reason, the geneti
 
ode is said to be degenerate orredundant. The degenera
y of the geneti
 
ode is what a

ounts for the existen
e of silentmutations, i.e., DNA mutations that 
ause a 
odon to be 
hanged into another whi
h happensto 
ode for the same aminoa
id thus yielding an identi
al protein.
2.3 Regulation of gene expressionThe genes of an organism are not all simultaneously expressed. Their a
tivation depends onthe 
urrent needs of the 
ell and is subje
ted to various regulatory me
hanisms. One of themost important me
hanisms is the trans
riptional regulation. Some of the non
oding regionsof DNA play a fundamental role in the regulation of trans
ription. These regions (regulatoryregions) 
ontain small sequen
es of nu
leotides, known as motifs, whi
h are re
ognized byproteins asso
iated with the trans
ription ma
hinery. The most 
ommon regulatory regionsare lo
ated upstream of the start of trans
ription and are 
alled promoter regions or, in abroader sense, 
is-regulatory regions. The presen
e of these motifs is essential for the e�
ientbinding of the 
ellular trans
ription ma
hinery. Di�erent motifs 
an play di�erent roles ingene expression. While some are 
riti
al for eli
iting the start of trans
ription others re
ruitproteins whi
h a
t as a
tivators or repressors.RNA polymerase is responsible for the trans
ription pro
ess. This enzyme, when examinedin vitro, trans
ribes DNA into RNA but initiates at nonspe
i�
 sites on the DNA.
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Figure 2.7: S
hemati
 representation of regulation in eukaryotesIn ba
teria1, the RNA polymerase 
ore is found asso
iated to an essential subunit 
alledSigma (σ). This σ fa
tor imposes a level of spe
i�
ity restri
ting the initiation of trans
riptionto promoter sequen
es. As many as seven di�erent σ subunits have been identi�ed [9℄, ea
hof whi
h dire
ts the RNA polymerase to bind a unique set of promoters. The most 
ommonsubunit is σ70 and is responsible for trans
ribing most genes. However, the asso
iation witha σ subunit will usually only yield a basal trans
ription level. The a
tion of DNA-bindingproteins 
alled a
tivators whi
h also bind spe
i�
 motifs allow for higher levels of expressionby e�
iently re
ruiting the RNA polymerase to spe
i�
 genes (Fig. 2.6). On the other hand,the binding of another sort of proteins named repressors to spe
i�
 sites 
an halt trans
riptionaltogether. Both a
tivators and repressors 
an be referred to generi
ally as trans
riptionfa
tors.A notable ex
eption is σ54 whi
h binds to spe
i�
 promoter sequen
es in a stable butina
tive state. It requires the a
tion of an a
tivator to start any level of trans
ription. Otherregulatory me
hanisms in ba
teria in
lude the a
tion of another kind of a
tivator whi
h indu
esa 
onformational 
hange in the promoter to eli
it the start of trans
ription [9℄.Trans
riptional regulation in eukaryotes [8℄ is 
onsiderably more 
omplex although thesame basi
 prin
iples apply. In fa
t, eukaryotes use di�erent types of RNA polymerase fordi�erent purposes. The most studied type whi
h is also responsible for trans
ribing most1It is worth noting that ba
teria are prokaryoti
 organisms.



12 CHAPTER 2. FUNDAMENTALS OF MOLECULAR BIOLOGYgenes is RNA polymerase II. This type of RNA polymerase requires several general trans
rip-tion fa
tors to form a fun
tional trans
ription initiation 
omplex. As with ba
teria, spe
i�
trans
ription fa
tors modulate the a
tivity of RNA polymerase.The regulation of trans
ription in eukaryotes is primarily made at the level of initiation oftrans
ription although in some 
ases it may be attenuated or stimulated at subsequent steps.Many genes in eukaryoti
 
ells are 
ontrolled by regulatory sequen
es lo
ated far upstreamfrom the trans
ription start site (sometimes over 10 000 nu
leotides). These sequen
es, 
alledenhan
ers, were found to stimulate trans
ription and are binding sites for trans
ription fa
torswhi
h are allowed to intera
t with the trans
ription ma
hinery be
ause the intervening DNA
an form loops (Fig. 2.7). Interestingly, enhan
ers are a
tive regardless of orientation withrespe
t to the dire
tion of trans
ription and 
an be lo
ated either upstream or downstream ofthe trans
ription start site. In addition to these regulatory me
hanisms, eukaryoti
 
ells 
analso regulate trans
ription by modifying the state of 
ondensation of 
hromatin.Genes whi
h are 
o-regulated are bound to share at least a subset of motifs whi
h 
orre-spond to binding sites of trans
ription fa
tors. Similarly, genes from 
losely related spe
ies,performing the same biologi
al fun
tion and purportedly having evolved from an an
estralgene (orthologous genes), are expe
ted to have 
onserved regulatory sequen
es. Finding 
om-mon sequen
es in the regulatory regions of these sets of genes is the basis for the operation ofmotif �nders as we shall see in the next 
hapter.



Chapter 3
Related work
3.1 Motif �ndingThe identi�
ation of promoter sequen
es and binding sites for trans
ription fa
tors is one ofthe most important tasks in the study of gene regulation. The sear
h for the elements involvedin gene expression regulation 
onsists, essentially, in the identi�
ation of well 
onserved regionsin non
oding DNA.These well 
onserved regions are usually referred to as 
onsensus sequen
es or motifs.Motif �nding is the problem of dis
overing these motifs without any prior knowledge of their
hara
teristi
s. As we said in the previous 
hapter these motifs 
an be sought by analyzingregulatory regions taken from genes of the same organism or from related genes of di�erentorganisms.The �rst approa
h is based on the assumption that motifs 
ommon to a number of regula-tory regions are likely to have a relevant role in gene expression regulation. In this approa
hwe 
an largely bene�t from knowledge derived from mi
roarray experiments or from quanti-tative proteomi
s analysis whi
h allows us to group genes that are 
oordinately expressed in
ertain experimental 
onditions. It is, then, reasonable to assume that some of these geneswill be 
o-regulated, in the sense that they will share a
tive regulatory elements.The se
ond approa
h, known as phylogeneti
 footprinting [10℄, requires 
areful sele
tionof what sequen
es to in
lude. These sequen
es must 
orrespond to regulatory regions of geneswhi
h are evolutionarily related and that are involved in the same biologi
al a
tivities indi�erent spe
ies. This approa
h is based on the assumption that fun
tional regions of DNA13



14 CHAPTER 3. RELATED WORKsu�er fewer mutations than non-fun
tional regions due to the sele
tive pressure to preservetheir biologi
al role. Well 
onserved regions a
ross these sequen
es are therefore expe
ted tohave a regulatory fun
tion.Given a set of genes 
hosen following one of the previously des
ribed approa
hes, thetask of identifying their regulatory regions is not always straightforward. In eukaryotes, theregulatory elements 
an be lo
ated quite far upstream from the start of trans
ription but 
overonly a small portion of the intergeni
 regions [8, 11℄. As a rule of thumb, one 
an 
hoose to
onsider stret
hes of up to a few thousand nu
leotides upstream from the trans
ription startsite. However, in the 
ase of enhan
ers, a
tive binding sites 
an be lo
ated downstream ofthe gene or even in introns. In prokaryotes, intergeni
 regions are usually mu
h smaller andregulatory elements are lo
ated fairly near the start of trans
ription. However, prokaryoti
genes also tend to 
luster in stru
tures 
alled operons whi
h share a regulatory region governingthe expression of all the genes in the group [8,9℄. Moreover, there are 
ases in whi
h genes ofan operon 
ontain se
ondary promoters in addition to the 
ommon regulatory region so thateven if information were available about whi
h genes form operons (whi
h, generally, is not)the 
orresponding intergeni
 regions 
ould not be dis
arded without 
areful analysis.It is also known that the trans
ription ma
hinery will re
ognize binding sites even if themotifs do not o

ur exa
tly [12℄, i.e., if there are some nu
leotide substitutions or even inser-tions and deletions. Sin
e we 
annot always 
on�dently establish a set of 
o-regulated genesa 
omputational approa
h to motif �nding should also permit motifs not to o

ur in all inputsequen
es.An algorithm to address motif �nding (i.e., a motif �nder) should, therefore, ta
kle theproblem of extra
ting motifs under these di�
ult 
onditions and with relatively few informa-tion. This problem is sometimes referred to as ab initio motif extra
tion. A related problemis motif lo
alization whi
h 
onsists in the identi�
ation of the o

urren
es of a motif in asequen
e given a motif des
ription. In this thesis we are mainly 
on
erned with motif �nding.However, both problems bear the question of motif representation.Motifs have been represented as a nu
leotide sequen
e (
onsensus sequen
e), a pro�lematrix, a weight matrix, an automaton or a sequen
e over a degenerate alphabet [12℄, butmost modern motif �nders report extra
ted motifs as plain nu
leotide sequen
es or as a weightmatrix. These weight matri
es, 
alled PWM (Position Weight Matri
es) or PSSM (Position
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i�
 S
ore Matri
es) generally represent 
ontiguous nu
leotide sequen
es of a 
ertain length
l. These |Σ| × l matri
es keep, for ea
h position in the motif, a s
ore for ea
h 
hara
ter inthe nu
leotide alphabet. Re
all that a PSSM is des
ribing a set of motif o

urren
es so theses
ores should allow us to distinguish a true o

urren
e from a non-o

urren
e.The �rst attempt to 
ompute the s
ores for these weight matri
es used a per
eptron [13℄and was aimed at dete
ting translation initiation regions in mRNA. The weights of the matrixwere the same 
omputed for the neural network, given the appropriate en
oding for ea
h motifo

urren
e to be des
ribed.Later attempts 
omputed the s
ores as the negative logarithms of the frequen
ies of ea
hnu
leotide at ea
h position [14�16℄. The sum of the s
ores for any parti
ular sequen
e yieldsthe negative logarithm of the probability of observing that parti
ular sequen
e in the 
olle
tionof des
ribed motif o

urren
es, assuming that the positions are independent.In [17℄, a study was made 
on
erning the information 
ontent held by several knownbinding sites at ea
h position. This 
ulminated in another way to 
ompute the s
ores of thePSSM [18℄ where ea
h element in the weight matrix is 
al
ulated as:

H(b, i) = − ln
fb,i

pbwhere b ∈ Σ is one of the four nu
leotides, i is a position in the motif being des
ribed, fb,iis the frequen
y of the nu
leotide b in position i a
ross the set of o

urren
es and pb is thefrequen
y of nu
leotide b a
ross the entire genome of the organism being 
onsidered. It is not
lear, however, what pb should be when we try to des
ribe o

urren
es of motifs taken fromregions of di�erent organisms. In [19℄ the authors noted the la
k of a good estimate of thestatisti
al signi�
an
e of observing a spe
i�
 information 
ontent and proposed a method for
al
ulating the p-value of an information 
ontent s
ore.It is easy to see that in the methods dis
ussed so far the s
ore of a parti
ular sequen
e issimply the result of the additive 
ontribution of the s
ores of ea
h nu
leotide in ea
h position.More re
ent de�nitions 
ompute the s
ore of ea
h element of the matrix as the rela-tive frequen
y of ea
h nu
leotide introdu
ing pseudo-
ounts to 
ompensate for small learningsets [12, 20℄. In this approa
h, ea
h element is 
omputed as:
W (k, j) =

mj(k) + bk

m + bwhere mj(k) denotes the number of times the nu
leotide k ∈ Σ o

urs in position j in the set of



16 CHAPTER 3. RELATED WORKknown binding sites, bk is the pseudo-
ount introdu
ed for ea
h nu
leotide k, m is the numberof known binding sites and b =
∑

k∈Σ
bk. In this 
ase, the s
ore of a parti
ular sequen
e is theprodu
t of the 
orresponding elements.Using weight matri
es to represent a motif has the 
lear advantage of 
apturing mu
hmore information about the putative binding site than other representations. For instan
e,many trans
ription fa
tors will re
ognize, at some positions, a purine (adenine or guanine), apyrimidine (
ytosine or thymine), a weak bond (thymine or adenine) or a strong bond (
ytosineor guanine) regardless of the spe
i�
 nu
leotide present therein. This information is not so
learly represented by an equivalent 
olle
tion of plain nu
leotide sequen
es (patterns). Onthe other hand, plain sequen
es are more appropriate for motifs with few degenerate positionsand fa
ilitate the problem of determining what is a motif o

urren
e.There are two major 
lasses of motif �nders: probabilisti
 and 
ombinatorial. Although notall algorithms �t adequately into this 
lassi�
ation, the most popular motif �nders 
urrentlyavailable do.Probabilisti
 methods in
lude approa
hes based on EM (Expe
tation-Maximization) [21℄like PROJECTION [22℄ and MEME [23,24℄ or its sto
hasti
 analog, Gibbs sampling [25�27℄used by GibbsDNA [25℄. These methods use a two-phase iterative pro
edure where in the�rst step the likeliest o

urren
es of the motif are identi�ed, based on a model 
omputed inthe previous iteration. The se
ond step adjusts the model for the motif (usually a weightmatrix) based on the o

urren
es determined in the previous step. In the �rst iteration theparameters of the initial model are usually set randomly.Some probabilisti
 approa
hes assume that the motif will o

ur in all input sequen
es orrequire the spe
i�
ation of a �xed length. The most �exible algorithms in this 
lass requireonly a length range to be spe
i�ed. The major drawba
k with these algorithms is theirsensitivity to noise in the data and the fa
t that they are not guaranteed to 
onverge to aglobal maximum. Moreover, most of them assume that there will only be one motif o

urringin the input sequen
es and at most on
e in ea
h sequen
e. Some algorithms like MEME haveremoved these assumptions but are less e�
ient [23, 24℄.CONSENSUS [19℄ is a greedy algorithm that outputs PSSMs, saving instan
es with thebest information 
ontent s
ore in ea
h step. It is, on
e again, not guaranteed to �nd optimalsolutions but it 
an 
ope with zero or multiple o

urren
es of the motif in ea
h input sequen
e.



3.1. MOTIF FINDING 17Combinatorial methods, whi
h typi
ally extra
t motifs 
onsisting of plain nu
leotide se-quen
es or sequen
es over a degenerate alphabet, usually involve enumerating all possiblepatterns either expli
itly or impli
itly. The simpli
ity of this approa
h allows us to de�ne a
lear 
omputational problem. Consider a set of sequen
es S = {S1, S2, . . . , St}. We are askedto �nd motifs within a range of lengths lmin, . . . , lmax, whi
h o

ur on q ≤ t of the presentedsequen
es with at most e mismat
hes, i.e., at most e nu
leotide substitutions (also referredto as having a Hamming distan
e up to e). It follows from this de�nition that a motif mayor may not o

ur exa
tly on the given set of sequen
es, due to the allowed degeneration. Forinstan
e, in the example illustrated by Fig. 3.1, only the motif CATAT is extra
ted, whereasin the 
ase of Fig. 3.2 motifs CATAA,CATAC,CATAG and CATAT satisfy the extra
tionparameters. The reason for requiring the motif to o

ur in less than t sequen
es is related tothe fa
t that some input sequen
es may be 
orrupted in the sense that they may not a
tually
ontain the motif being sought. Algorithms that take this approa
h either enumerate all pos-sible patterns of a �xed length l, whi
h we will hen
eforth refer to as an l-mer, and verify itso

urren
e in the input sequen
es with at most e mismat
hes (pattern-driven approa
h) ortake ea
h l-mer o

urring in the input sequen
es and generate its e-mismat
h neighbourhood,i.e., all the patterns up to e mismat
hes away from the pattern being 
onsidered, and keep atable with a hit 
ount, reporting all patterns above the q threshold (sample-driven approa
h).Several bran
h-and-bound algorithms have been proposed in the last few years that try toredu
e the exponential sear
h spa
e taking advantage of sophisti
ated data stru
tures. TheMULTIPROFILER algorithm [28℄ follows a sophisti
ated sample-driven approa
h wherebyit manages to avoid generating the e-mismat
h neighbourhood for all sampled sequen
es. Pat-ternBran
hing [29℄, on the other hand, manages to avoid analyzing all the patterns in the
e-mismat
h neighbourhood of a sample sequen
e. The WINNOWER algorithm [2℄ is basedon graph theory. It represents ea
h l-mer as a vertex in a graph and ea
h pair of verti
es is
onne
ted by an edge if the two l-mers have no more than 2e mismat
hes. Motifs are foundby identifying 
liques in the graph. MITRA [3℄ relies on a mismat
h tree that partitionsthe sear
h spa
e. Ea
h bran
h of the tree is labeled with a letter representing one of thefour nu
leotides and ea
h node is asso
iated with the l-mers in the input sequen
es whosepre�x mat
hes the path-label of the node with at most e mismat
hes. The algorithm will stopbran
hing as soon as it determines that the subspa
e asso
iated with a node is unable to hold



18 CHAPTER 3. RELATED WORK
cis−regulatory region

︷ ︸︸ ︷

GATTGCATCATATATCCGATT

gene
︷ ︸︸ ︷

AGCCGATTA . . .

GACCGTACGCCATATGAAGCAATTGCATTAC . . .

ACTCATATGCCTACTTAGCTAGCTAATTTGC . . .Reports: CATATFigure 3.1: Motif extra
tion for l = 5, e = 0 and q = t = 3

cis−regulatory region
︷ ︸︸ ︷

GATTGCATCATAGATCCGATT

gene
︷ ︸︸ ︷

AGCCGATTA . . .

GACCGTACGCCATACGAAGCAATTGCATTAC . . .

ACTCATAAGCCTACTTAGCTAGCTAATTTGC . . .Reports: CATAA,CATAC,CATAG and CATATFigure 3.2: Motif extra
tion for l = 5, e = 1 and q = t = 3a motif o

urring in a least q ≤ t input sequen
es. SMILE [5℄ and RISO [6℄ use a generalizedsu�x-tree [30, 31℄ to represent the set of input sequen
es. They then perform an exhaustivelexi
ographi
 sear
h to identify motifs whi
h o

ur in q ≤ t input sequen
es with at most emismat
hes. While traversing the su�x-tree the algorithm avoids visiting all nodes by haltingthe sear
h whenever it determines that the restri
tions imposed by the extra
tion parameters
an no longer be met.Despite the fa
t that these algorithms take exponential time or spa
e in terms of l, theyrepresent a straightforward approa
h to motif �nding and, unlike the probabilisti
 methods,their output is easily interpreted.The major problems with 
ombinatorial motif �nders are their inability to dis
riminate therelevant extra
ted motifs from the potentially numerous false positives and the large numberof parameters that need to be spe
i�ed (espe
ially when sear
hing for 
omplex motifs as wewill dis
uss in the next se
tion). The large number of false positives is mostly dealt with usingstatisti
al tests to assess how unexpe
ted is an extra
ted motif for a spe
i�
 set of parameters,given the statisti
al 
hara
teristi
s of the input sequen
es [32�34℄. Addressing the problem ofthe large parameter spa
e is the 
entral aim of this thesis and will be dis
ussed in the next
hapter.
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tion of 
omplex motifsSo far we have mainly dis
ussed the extra
tion of motifs 
onsisting of 
ontiguous sequen
esof nu
leotides, also known as simple motifs, monads or ungapped patterns. In e�e
t, earlyalgorithms had little or no support for the extra
tion of motifs with gaps. These motifs withgaps or spa
ers, whi
h we will refer to as 
omplex motifs, otherwise known as 
omposite motifs,stru
tured motifs or multi-ads (dyads, triads, et
.) 
onsist of several ordered simple motifs ata 
ertain distan
e of one another.The advantages of 
onsidering 
omplex motifs are manyfold. On the one hand, 
omplexmotifs 
an be better models of promoter regions. Some trans
ription fa
tor DNA-binding do-mains have a 
omposite stru
ture, forming dimers (helix-loop-helix or leu
ine-zipper domains)and the 
ooperative binding of several trans
ription fa
tors and RNA polymerase to the DNAmole
ule also seems to be bound by distan
e restri
tions. On the other hand, many authorsnow agree that 
omponent motifs may be too weak to be extra
ted in isolation, i.e., they maybe poorly distinguishable from the surrounding noise in the sequen
es, but by imposing a 
er-tain distan
e between 
omponent motifs an unusual (and thus statisti
ally signi�
ant) patternmay be identi�ed. This is a 
riti
al issue for algorithms that extra
t too many motifs and areleft with the problem of de
iding whi
h of them are to be 
onsidered relevant. In addition tothese advantages, 
omplex motifs 
an be used to model simple motifs with highly degenerate
entral regions. In this 
ase, the gap between 
omponent motifs e�e
tively 
orresponds to aset of wild
ards.As we said, most motif �nders have limited ability to in
orporate gaps. However, in re
entyears several proposals have been published. Some 
ombinatorial as well as probabilisti
 algo-rithms 
an now extra
t 
omplex motifs although usually with no more than two 
omponentsand often sear
hing for a gap of a �xed length. These approa
hes are in general not verye�
ient sin
e they enumerate all possible motifs with two 
omponents either expli
itly [1℄ orby prepro
essing the input sequen
es, as is the 
ase withWINNOWER [2℄ andMITRA [3,4℄.This prepro
essing involves generating virtual (l1 + l2)-mers resulting from the 
on
atenationof every l1-mer at a 
ertain range of distan
es from every other l2-mer in the input sequen
esthereby redu
ing the problem to �nding simple motifs. If the range of a

eptable distan
esbetween ea
h 
omponent is wide this method be
omes very ine�
ient in pra
ti
e, espe
iallyfor large or numerous input sequen
es. These methods are, therefore, restri
ted to 
onsidering
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y1 y2 y3 . . . ym

x1 a11 a12 a13 . . . a1m

x2 a21 a22 a23 . . . a2m

x3 a31 a32 a33 . . . a3m. . . . . . . . . . . . . . . . . .
xn an1 an2 an3 . . . anmFigure 3.3: Representation of a data matrixrelatively short motifs and a limited range of distan
es between ea
h 
omponent.To the best of our knowledge, there is only one family of algorithms whi
h 
an e�
ientlysear
h for 
omplex motifs with an arbitrary number of 
omponents separated by a vari-able distan
e and, in addition, is able to in
orporate mutations in any of the 
omponents:SMILE/RISO [5,6℄. These 
ombinatorial algorithms take advantage of a su�x-tree to delivertheir unmat
hed �exibility. However, there is a pri
e to pay for this �exibility whi
h has to dowith the size of the parameter spa
e and the need to adjust the sear
h parameters to obtaina tra
table output.3.2 Bi
lusteringIn the next 
hapter we will introdu
e a method for parameter estimation using bi
lusteringte
hniques. It is, then, important to o�er some ba
kground on the problem of identifyingbi
lusters and to dis
uss 
urrently available algorithms.Bi
lustering algorithms have already been extensively used to address problems in the �eldof 
omputational biology, in parti
ular, in the analysis of gene expression data [35℄. Usually,gene expression data is arranged in a data matrix, where ea
h row 
orresponds to a geneand ea
h 
olumn 
orresponds to an instant of time or an experimental 
ondition. Fig. 3.3illustrates a data matrix where ea
h row xi 
an represent a di�erent gene and ea
h 
olumn yia spe
i�
 
ondition.In order to identify an a
tivation pattern 
ommon to a group of genes under a subsetof all the experimental 
onditions we have to sear
h for a proper sub-matrix, i.e., a subsetof rows and a subset of 
olumns. Traditional 
lustering algorithms are not able to a
hieve



3.2. BICLUSTERING 21this, sin
e they would only identify either a subset of genes presenting a similar behavioura
ross all experimental 
onditions or a subset of 
onditions where every gene behaves simi-larly. A new approa
h whi
h 
ame to be known as bi
lustering allows us to group rows and
olumns simultaneously reporting a subset of genes exhibiting a similar behaviour on a subsetof 
onditions.Given a data matrix, A, with n rows and m 
olumns, aij is the matrix element on row
i and 
olumn j. Matrix A, 
an be seen as a set of rows X = {x1, . . . , xn} and 
olumns
Y = {y1, . . . , ym}, denoted by (X,Y ). A bi
luster, B, being a subset of rows I ⊆ X and
olumns J ⊆ Y , 
an be denoted by (I, J).The problem addressed by bi
lustering algorithms is the identi�
ation of a set of bi
lusters
Bk = (Ik, Jk) given a data matrix A, so that ea
h element on a bi
luster Bk satis�es somespe
i�
 
hara
teristi
 of homogeneity. In this thesis we are only interested in identifying avariation of 
onstant bi
lusters, i.e., a bi
luster, (I, J), where ea
h of its elements has the samevalue, α, i.e., aij = α for all i ∈ I, j ∈ J . A bi
luster that obeys the previous 
ondition is saidto be a perfe
t 
onstant bi
luster, but in many situations one is 
ontent with a near-
onstantor low-varian
e bi
luster.A data matrix 
an be seen as a representation of a weighted bipartite graph. A graph
G = (V,E), where V is the set of verti
es and E the set of edges, is said to be bipartiteif its verti
es 
an be partitioned into two sets L and R (V = L ∪ R), su
h that every edge,
(u, v) ∈ E, is su
h that u ∈ L and v ∈ R. A data matrix A = (X,Y ) 
an be seen as a weightedbipartite graph where ea
h node ni ∈ L, 
orresponds to a row and nj ∈ R 
orresponds toa 
olumn. The edge (ni, nj) ∈ E has weight aij denoting the matrix element on row i and
olumn j.The problem of �nding bi
lusters 
an be equated with the problem of �nding a bi
liquein a bipartite graph. A bi
lique in a bipartite graph, G = (L ∪ R,E), is a sub-graph G′ =

(L′ ∪R′, E′) su
h that L′ ⊆ L, R′ ⊆ R, E′ = {(u, v) ∈ E : u ∈ L′, v ∈ R′} in whi
h (u, v) ∈ E′for all u ∈ L′,v ∈ R′. Fig. 3.4 shows a bipartite graph, with ea
h li and ri vertex pertainingto the L and R partitions, respe
tively. The maximum size bi
lique, in this example, is theone formed by verti
es l1, l2, r1, r2 and the edges between them.Considering the simplest 
ase, when our data matrix A is a binary matrix, i.e., a matrixwhose elements are either 0 or 1, the 
orresponding bipartite graph will 
ontain the edge
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ements
l2

l1

l3

r1

r2

r3Figure 3.4: Example of a bipartite graph
(ni, nj) i� aij = 1. In this 
ase, a 
onstant bi
luster in A with ea
h aij = 1 
orrespondsto a bi
lique in the bipartite graph. Thus, identifying a maximum size bi
luster in A isequivalent to �nding a maximum edge bi
lique in a bipartite graph, whi
h is known to bean NP-
omplete problem [36℄. The sear
h for more sophisti
ated types of bi
lusters that hasto perform 
omputations on the a
tual value of ea
h matrix element is ne
essarily not less
omplex than this 
ase. It is not surprising, then, that most algorithms that address thisproblem use heuristi
 approa
hes.In many situations, however, we have to 
onsider the fa
t that the value of an element
aij in the data matrix must be seen as the result of the 
ontribution of all the bi
lusters thatshare row i and 
olumn j. To a

ount for this situation, some authors have introdu
ed a plaidmodel [37℄ in whi
h ea
h element of the data matrix is viewed as a sum of layers. The plaidmodel 
an be de�ned as follows:

aij =

K∑

k=0

θijkρikκjkwhere K is the number of layers (bi
lusters) sharing row i and 
olumn j of the data matrix,
θijk denotes the 
ontribution of bi
luster Bk for the value of the spe
i�ed matrix element, andwhere ρik and κjk are binary values representing the membership of row i and 
olumn j withrespe
t to bi
luster Bk. The value θij0 is used to model a possible bi
luster in
luding the entiredata matrix 
ontributing with a ba
kground value 
ommon to all matrix elements. Therefore,we de�ne ρi0 = κj0 = 1. This has been designated as the general additive model [35℄. If we
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onsidering only 
onstant bi
lusters then θijk = αk, where αk is the 
onstant value of allelements of Bk.Similarly, one 
an de�ne a general multipli
ative model [35℄, as su
h:
aij =

K∏

k=0

θijkρikκjkCurrent algorithms will either try to identify a single bi
luster whi
h maximizes a givenmerit fun
tion (e.g. minimum varian
e, in the 
ase of 
onstant bi
lusters) or a given numberof bi
lusters. To this e�e
t, the di�erent methods 
an take one of many approa
hes. In oneapproa
h, the algorithms will dis
over one bi
luster at a time [37,38℄. In this 
ase, previouslyidenti�ed bi
lusters need to be masked (usually with random values) so that the algorithm doesnot repeatedly extra
t the same bi
luster or they 
an extra
t ea
h bi
luster iteratively relyingon a plaid model. In another approa
h, the methods may try to dis
over a set of bi
lusters at atime [39�41℄. These methods usually rely on hierar
hi
al 
lustering algorithms that iterativelygenerate 
lusters of rows and 
olumns whi
h are subsequently 
ombined to extra
t bi
lusters.Finally, the algorithms 
an try to dis
over all bi
lusters simultaneously [42�44℄. In this 
ase,they usually rely on a set of initial bi
lusters 
alled seeds whi
h are obtained by randomlyassigning rows and 
olumns to ea
h. The algorithms will then start an iterative pro
ess inwhi
h they try to improve the quality of the bi
lusters with respe
t to a merit fun
tion byadding or removing rows and 
olumns. Another alternative is to try to exhaustively enumerateall bi
lusters [45�51℄, an approa
h we will dis
uss below.Currently available bi
lustering algorithms have been divided into �ve 
lasses:1. Iterative row and 
olumn 
lustering 
ombination2. Divide and 
onquer3. Greedy iterative sear
h4. Exhaustive bi
luster enumeration5. Distribution parameter identi�
ationThe �rst 
lass is the most straightforward approa
h to bi
lustering and 
onsists of al-gorithms whi
h try to iteratively 
ombine 
lusters of rows and 
lusters of 
olumns obtained



24 CHAPTER 3. RELATED WORKseparately [40, 41, 48℄. The 
lass named divide and 
onquer refers to algorithms whi
h breakthe problem into several similar subproblems of smaller size [39, 52℄. These smaller problemsare then re
ursively solved and subsequently 
ombined to obtain a solution to the originalproblem. These methods generally work by splitting the data matrix into sub-matri
es a
-
ording to some heuristi
 fun
tion. Divide-and-
onquer algorithms are potentially very fastbut they may miss an unde�ned number of bi
lusters whose elements o

ur a
ross varioussub-matri
es and whi
h are 
onsequently split before they 
an be identi�ed. Methods whi
hperform a greedy iterative sear
h pro
eed by always making the lo
ally optimal 
hoi
e hopingthat it will lead to a good global solution [38,42�44,50,51,53℄. These methods are based in thegreedy addition or removal of rows/
olumns in order to maximize a merit fun
tion. The 
lassof algorithms performing exhaustive bi
luster enumeration [45�47℄ is based on the observationthat the best bi
lusters with respe
t to a merit fun
tion 
an only 
on�dently be identi�edusing a thorough analysis of all possible bi
lusters. There is, however, an exponential numberof possible bi
lusters in terms of the size of the data matrix. These methods, therefore, arefor
ed to assume restri
tions on the size of the bi
lusters and to use e�
ient te
hniques ifthey are to be of pra
ti
al use. Finally, algorithms based on distribution parameter identi�-
ation [37, 54, 55℄ assume that bi
lusters are generated a

ording to a statisti
al model. Therationale is, therefore, to estimate the distribution parameters that better �t the data. Thisis done by relying on an iterative pro
edure whi
h tries to minimize a given 
riterion.In the next 
hapter we will dis
uss a method that uses bi
lustering te
hniques relying onan algorithm whi
h 
an be pla
ed within the 
lass of algorithms performing greedy iterativesear
h. Despite using a non-
onventional de�nition of the problem it will still apply the basi
prin
iples dis
ussed in this se
tion.



Chapter 4
Inferen
e of 
omplex motifs
Current methods for the extra
tion of 
omplex motifs have a major drawba
k. Their outputis, in pra
ti
e, extremely sensitive with respe
t to input parameters. If we are too permissiveby allowing a high degree of degeneration or by 
onsidering a large range of allowable lengthsor yet, if we require the motifs to be present only in a small fra
tion of the input sequen
es,we may get an in
ommensurate number of motifs as output and we are left with the problemof identifying the biologi
ally relevant ones. On the other hand, if we spe
ify rigid parameters,like a spe
i�
 length, low degree of degeneration and require the motif to be present in allsequen
es we may get no output at all. In fa
t, without any prior information, any rigidparameter spe
i�
ation is purely spe
ulative. These problems are even more pressing for
omplex motifs where one needs to spe
ify the number of 
omponents, the allowed length andthe number of mismat
hes for ea
h, and also the distan
e between 
omponents. An exhaustivesear
h in the parameter spa
e in this 
ase is absolutely unfeasible. In this thesis we presenta method whi
h 
an address these issues by avoiding some degree of parameter sensitivity,espe
ially in what 
on
erns 
omplex motifs.In [5℄, Sagot pointed out the need to distinguish between a motif and its o

urren
es in theinput sequen
es. In fa
t, Sagot avoided the use of the term motif altogether introdu
ing thenotion of model. A model 
orresponds to a des
ription of what 
onstitutes a model o

urren
e.This distin
tion is parti
ularly useful for 
omplex motifs. A model (simple motif) is de�nedas a sequen
e over Σ+. A model m is said to have an e-o

urren
e, or simply an o

urren
e,in the input sequen
es, if there is a word u in the input sequen
es at a Hamming distan
e of
m not greater than e. A model is said to be valid if it has o

urren
es in at least q ≤ t input25
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es. A stru
tured model (
omplex motif) is de�ned as a pair (m,d) where:
• m = (mi)1≤i≤p is a p-tuple of models (mi ∈ Σ+), denoting p 
omponents
• d = (dmini

, dmaxi
, δi)1≤i≤p−1 is a (p−1)-tuple of triplets, denoting the p−1 gaps between
omponentsFurthermore, 
onsidering a set of input sequen
es S = {S1, . . . , St}, a stru
tured model issaid to be valid if, for all 1 ≤ i ≤ p− 1 and for all o

urren
es ui of mi, there are o

urren
es

u1, . . . , up of simple motifs m1, . . . ,mp su
h that:
• u1, . . . , up belong to the same input sequen
e
• there exists di, with dmini

+ δi ≤ di ≤ dmaxi
− δi, su
h that the distan
e between the endposition of ui and the start position of ui+1 in the sequen
e is in [di − δi, di + δi]

• di is the same for the p-tuple of o

urren
es present in at least q ≤ t distin
t inputsequen
esThese de�nitions serve the purpose of a motif �nder whi
h needs to restri
t the sear
hspa
e and to de
ide what is a su�
iently 
ommon pattern so that it 
an be reported. Theyo�er a 
lear de�nition of what should be extra
ted and reported as a valid motif under spe
i�
sear
h parameters, in
luding the number of 
omponents, and the distan
e parameters.Our purpose is to identify features in the input sequen
es that indi
ate the presen
e ofinteresting patterns (not unlike motif �nders in this regard), by taking a broader view of thesear
h spa
e. We make no assumptions about the number of 
omponents of the 
omplexmotifs we are looking for, nor about the distan
es between ea
h 
omponent. We sa
ri�
e,however, the predi
tability of the results insofar as the method we propose is not guaranteedto identify the presen
e of all interesting 
omplex motifs and will also be vulnerable to thepossibility of reporting false positives. Furthermore, as an initial approa
h, we do not 
onsiderthe sear
h for motifs with degeneration.In this 
ontext, we de�ne a 
omplex motif loosely as being 
omposed of an unde�nednumber of 
omponent simple motifs ea
h separated by a distan
e that is allowed to varywithin an interval of width 2ε, this means that a 
omplex motif 
an be seen as a pair (m,d)where m = (mi)1≤i≤p, with mi ∈ Σ+ and d = (di)1≤i≤p−1. An o

urren
e of a 
omplex motif
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S1 : TAACCTGGTACA
S2 : CGAATCTTGGTC
S3 : GGAACTGCGGTG
S4 : CTAATCCTAGGC
S5 : GTAACTTCCGGT
S6 : TCAAGCCTAGGCFigure 4.1: A set of input sequen
esis, similarly, a set of exa
t o

urren
es of ea
h 
omponent simple motif, u1, . . . , up in the sameinput sequen
e, where ea
h o

urren
e is separated by a gap whose length is in [di− ε, di + ε].The only parameter we are expe
ted to spe
ify is ε. All the other 
hara
teristi
s of the
omplex motif are to be identi�ed by this new exploratory method.4.1 Matrix of 
o-o

urren
esAs we have said, the motivation for the method we propose is the need to avoid arbitrarilyde�ned extra
tion parameters. Thus, instead of seeking motifs whi
h 
onform to 
ertain pre-de�ned 
riteria, we try to 
hara
terize 
ertain features of the input sequen
es. To that e�e
t,we begin by building a matrix of 
o-o

urren
es,M, as we will explain below.To build this matrix we will �rst need to identify all o

urren
es of sequen
es of very smalllength, λ, i.e., all λ-mers in the input sequen
es, S = {S1, . . . , St}.Let L(S) = {m1, . . . ,mz} be the list of all su
h λ-mers1 , noting that z ≤ |Σ|λ. Fig. 4.1shows a set of input sequen
es that we will use to illustrate the de�nitions given below. Inthis example we will use λ = 2 to make it easier to follow.De�nition 4.1 (List of o

urren
es of a λ-mer) Let S be a set of input sequen
es andlet m ∈ L(S). O

i,S(m) denotes the set of 
oordinates of all o

urren
es of m in Si ∈ S.This set, O

i,S(m), is therefore a list of integers denoting the positions at whi
h we 
an�nd m on a sequen
e Si ∈ S. Whenever the set of input sequen
es, S, is 
lear from the1Good mathemati
al pra
ti
e would advise us to denote the list of all λ-mers on a set of sequen
es S as

Lλ(S). We will, however, omit the λ lest our notation be
omes too dense. We will assume that the value of λis �xed and known a
ross all de�nitions.
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ontext we will simply write O

i(m). Con
erning the example in Fig. 4.1, it is easy to seethat O

3(GG) = {1, 9}, O

1(AA) = {2} or that O

6(TT) = ∅.De�nition 4.2 (Con�guration of a pair of λ-mers) Let S be a set of input sequen
es. A
on�guration of a pair of λ-mers is a triple (mr,ms, d), with mr,ms ∈ L(S) and d ∈ Z \ {0}.In this de�nition we simply introdu
e a mathemati
al obje
t whi
h we 
all a 
on�guration.This obje
t is asso
iated to a set of input sequen
es and will be used to denote the 
o-o

urren
e of a pair of λ-mers in a spe
i�
 relative position.De�nition 4.3 (Con�gurations of a pair of λ-mers over a sequen
e Si ∈ S) Let S bea set of input sequen
es and let mr, ms ∈ L(S). ∆i,S(mr,ms) denotes the set of all 
on�gu-rations of mr and ms over Si ∈ S.
∆i,S(mr,ms) = {(mr,ms, d) : d = cs − cr, cr ∈ O

i,S(mr), cs ∈ O

i,S(ms), cr 6= cs}Note that if we 
onsider the 
on�guration (mr,ms, d) and if d < λ then the 
on�gu-ration a
tually represents the o

urren
e of a (λ + d)-mer. It is also interesting to notethat ∆i,S(ms,mr) = {(ms,mr, d) : (mr,ms,−d) ∈ ∆i,S(mr,ms)}. On
e again, we will use

∆i(mr,ms) every time the set of input sequen
es is 
lear from the 
ontext. Consideringthe previous example, we 
an observe that ∆3(AA, GG) = {(AA, GG,−2), (AA, GG, 6)} or that
∆6(AA, TT) = ∅.De�nition 4.4 (S
ore of a 
on�guration of a pair of λ-mers) Let S be a set of inputsequen
es and let mr, ms ∈ L(S) and d ∈ Z.

µi,S : Σλ × Σλ ×Z 7→ {0, 1} is the membership fun
tion of a 
on�guration with respe
t tothe set of all 
on�gurations of the two λ-mers on an input sequen
e Si ∈ S, de�ned as:
µi,S(mr,ms, d) =







1 if (mr,ms, d) ∈ ∆i,S(mr,ms)

0 otherwise

σS : Σλ×Σλ×Z 7→ {0, . . . , |S|} is the s
ore fun
tion for a 
on�guration and is de�ned as:
σS(mr,ms, d) =

|S|
∑

i=1

µi,S(mr,ms, d)



4.1. MATRIX OF CO-OCCURRENCES 29The s
ore of a 
on�guration of a pair of λ-mers is nothing more than the number ofsequen
es where that parti
ular 
on�guration 
an be observed. Like in previous de�nitions, wewill use σ(mr,ms, d) without mentioning the set of input sequen
es whenever it is 
lear whi
hset we are 
onsidering. In the example of Fig. 4.1 we have σ(AA, GG, 7) = 3, sin
e GG o

urs7 positions after AA in sequen
es S4, S5 and S6, yielding µ4,S(AA, GG, 7) = µ5,S(AA, GG, 7) =

µ6,S(AA, GG, 7) = 1.De�nition 4.5 (ε-tolerant s
ore of a 
on�guration of a pair of λ-mers) Let S be a setof input sequen
es and let mr,ms ∈ L(S) and ε ∈ N0. The ε-tolerant s
ore of a 
on�guration
σε
S : Σλ × Σλ ×Z 7→ N0 is de�ned as:

σε
S(mr,ms, d) =

|S|
∑

i=1

max
k=−ε,...,ε

µi,S(mr,ms, d + k) (d 6= 0)Furthermore, σε
S(mr,ms, 0) = 0.The 
on
ept of ε-tolerant s
ore of a 
on�guration of a pair of λ-mers addresses the needto allow for a 
on�guration to have slight variations. This removes the stri
tness of requiringa pair of λ-mers to 
o-o

ur at �xed relative positions in order to have a high s
ore. This 
anbe illustrated by the example shown in Fig. 4.1 where σ(AA, GG, 7) = 3, σ(AA, GG, 6) = 2 and

σ(AA, GG, 5) = 1 but σ1(AA, GG, 7) = 5, σ1(AA, GG, 6) = 6 and σ1(AA, GG, 5) = 3. A 1-tolerants
ore is able to grasp the fa
t that the 2-mer AA 
o-o

urs with GG in all input sequen
es at adistan
e of 6±1 positions. In
identally, σ1(AA, GG, 4) = 1, despite the fa
t that σ(AA, GG, 4) = 0.This 
an be useful to des
ribe patterns of 
o-o

urren
e that have a high ε-tolerant s
ore eventhough they never a
tually o

ur in the input sequen
es.De�nition 4.6 (Most 
ommon 
on�guration of a pair of λ-mers) Let S be a set of in-put sequen
es and let mr,ms ∈ L(S). A 
on�guration (mr,ms, d
∗) is said to a most 
om-mon 
on�guration of the two λ-mers if, for every 
on�guration (mr,ms, d), σS(mr,ms, d

∗) ≥

σS(mr,ms, d).Furthermore, we say it is a ε-tolerant most 
ommon 
on�guration if the same assertionholds for the ε-tolerant s
ore.The notion of most 
ommon 
on�guration will be used to �nd the 
on�guration or, indeed,the 
on�gurations with the highest s
ore for a pair of λ-mers. From the example shown in



30 CHAPTER 4. INFERENCE OF COMPLEX MOTIFSAA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TTAA 0 3 2 2 1 3 2 6 2 2 6 4 3 3 3 2AC 3 1 0 0 1 1 2 3 1 1 3 3 2 1 2 1AG 2 0 1 1 1 2 0 2 0 2 2 0 2 2 0 0AT 2 0 1 0 0 1 1 2 1 1 2 1 1 2 1 1CA 1 1 1 0 0 1 0 1 0 1 1 1 1 1 1 0CC 3 1 2 1 1 0 1 3 0 2 4 2 2 2 1 1CG 2 2 0 1 0 1 0 2 1 1 2 2 1 1 1 1CT 6 3 2 2 1 3 2 1 2 3 5 3 3 2 3 2GA 2 1 0 1 0 0 1 2 0 1 2 2 0 1 2 1GC 2 1 2 1 1 2 1 3 1 1 2 1 2 2 1 0GG 6 3 2 2 1 4 2 5 2 2 1 4 3 3 3 2GT 4 3 0 1 1 2 2 3 2 1 4 1 2 2 3 2TA 3 2 2 1 1 2 1 3 0 2 3 2 2 2 1 1TC 3 1 2 2 1 2 1 2 1 2 3 2 2 1 1 1TG 3 2 0 1 1 1 1 3 2 1 3 3 1 1 1 1TT 2 1 0 1 0 1 1 2 1 0 2 2 1 1 1 0Figure 4.2: Matrix of 
o-o

urren
es,M1, for the input sequen
es of Fig. 4.1Fig. 4.1 it is easy to see that the most 
ommon 
on�guration for the pair (AA, GG) is (AA, GG, 7).The 1-tolerant most 
ommon 
on�guration is, however, (AA, GG, 6).We 
an now de�ne a matrix of 
o-o

urren
es that gathers the information about the
ε-tolerant s
ore of the most 
ommon 
on�guration of every pair of λ-mers.De�nition 4.7 (Matrix of 
o-o

urren
es) Let S be a set of input sequen
es. A matrixof 
o-o

urren
es over S with ε toleran
e, Mε

S , is the matrix where ea
h of its elements aij isde�ned as:
aij = σε

S(mi,mj , d
∗)where (mi,mj , d

∗) is a ε-tolerant most 
ommon 
on�guration of mi,mj ∈ L(S) and i, j =

1, . . . , |L(S)|.The matrix of 
o-o

urren
es ,M1, derived from the input sequen
es of Fig. 4.1 is shownin Fig. 4.2. We 
an see, by inspe
ting the matrix and the input sequen
es, that there are two
on�gurations with the maximum 1-tolerant s
ore: (AA, CT, 3) and (AA, GG, 6). In this 
ase, itis easy to see that AA 
o-o

urs with CT in all sequen
es at a relative distan
e of 3 ± 1 andwith GG, also in all sequen
es at a relative distan
e of 6± 1.



4.1. MATRIX OF CO-OCCURRENCES 31The matrix of Fig. 4.2 is symmetri
. The next lemma will prove that it is always the 
ase.Lemma 4.1 A matrix of 
o-o

urren
es, Mε
S is symmetri
, i.e., aij = aji for every i, j =

1, . . . , |L(S)|.ProofLet us assume there are p, q ∈ {1, . . . , |L(S)|} su
h that apq 6= aqp. This entails theassertion that σε
S(mp,mq, d

∗
pq) 6= σε

S(mq,mp, d
∗
qp), where (mp,mq, d

∗
pq) and (mq,mp, d

∗
qp) are

ε-tolerant most 
ommon 
on�gurations of (mp,mq) and (mq,mp), respe
tively.Let us 
onsider, without loss of generality, that σε
S(mp,mq, d

∗
pq) > σε

S(mq,mp, d
∗
qp)It follows that

|S|
∑

i=0

max
k=−ε,...,ε

µi,S(mp,mq, d
∗
pq + k) >

|S|
∑

i=0

max
k=−ε,...,ε

µi,S(mq,mp, d
∗
qp + k)It is easy to see that ∆i,S(mp,mq) = {(mp,mq, d

∗
pq) : (mq,mp,−d∗pq) ∈ ∆i,S(mq,mp)}.Therefore, for every sequen
e Si we have that µi,S(mp,mq, d

∗
pq) = µi,S(mq,mp,−d∗pq). And
onsequently,

|S|
∑

i=0

max
k=−ε,...,ε

µi,S(mp,mq, d
∗
pq + k) =

|S|
∑

i=0

max
k=−ε,...,ε

µi,S(mq,mp,−d∗pq + k)But this means that σε
S(mq,mp,−d∗pq) > σε

S(mq,mp, d
∗
qp) whi
h 
ontradi
ts the fa
t that

(mq,mp, d
∗
qp) is a ε-tolerant most 
ommon 
on�guration of (mq,mp).

�Algorithm 1 
omputes the matrix of 
o-o

urren
es with ε-toleran
e. We will now showthat its time 
omplexity is O(N2) where N =
∑|S|

i=1
|Si|. It is easy to see that the lists ofo

urren
es for every λ-mer in every sequen
e 
an be obtained in a pre-pro
essing stage in

O(N) time. The 
y
le from line 5 through line 18 
onsiders all o

urren
es of all λ-mers inea
h sequen
e. There are exa
tly ∑|S|
i=1
|Si| − λ + 1 < N su
h o

urren
es and therefore thenumber of possible pairs of o

urren
es is O(N2), whi
h 
orresponds to the number of timesthe 
y
le will be invoked. Ea
h operation in the 
y
le 
an be performed in O(1) 
onsideringthat ε is �xed and that the sets Confi 
an be implemented using two arrays of size |Si| (onefor negative and another for positive values of d). The 
y
le from line 19 through line 21 isinvoked at most ∑|S|

i=1
(|Si|−λ+1)2 < N2 times sin
e there 
an be no more than (|Si|−λ+1)2



32 CHAPTER 4. INFERENCE OF COMPLEX MOTIFSAlgorithm 1 Computes the ε-tolerant matrix of 
o-o

urren
es1: for all mr,ms ∈ L(S) do2: MaxS
ore← 03: for all Si ∈ S do4: Confi ← ∅5: for all cr ∈ O

i(mr), cs ∈ O

i(ms) do6: d← cr − cs7: if d 6= 0 then8: Confi ← Confi ∪ {(mr,ms, d)}9: for k = 1 to ε do10: if d + k 6= 0 then11: Confi ← Confi ∪ (mr,ms, d + k)12: end if13: if d− k 6= 0 then14: Confi ← Confi ∪ (mr,ms, d− k)15: end if16: end for17: end if18: end for19: for all (mr,ms, d) ∈ Confi do20: S
ore[(mr,ms, d)]← S
ore[(mr,ms, d)] + 121: end for22: end for23: for all (mr,ms, d) ∈
⋃

i Confi do24: if S
ore[(mr,ms, d)] > MaxS
ore then25: MaxS
ore← S
ore[(mr,ms, d)]26: end if27: end for28: M [r, s]← MaxS
ore29: end for



4.2. BICLUSTERING APPROACH 33Complex motif: TTGCAn5TATTACon�gurations of 4-mers: (TTGC,TGCA,1) (TGCA,TTGC,-1)(TTGC,TATT,6) (TATT,TTGC,-6)(TTGC,ATTA,7) (ATTA,TTGC,-7)(TGCA,TATT,5) (TATT,TGCA,-5)(TGCA,ATTA,6) (ATTA,TGCA,-6)(TATT,ATTA,1) (ATTA,TATT,-1)Figure 4.3: Con�gurations of 4-mers indu
ed by the presen
e of a 
omplex motif
on�gurations of pairs of λ-mers in a sequen
e. The same 
an be said for the 
y
le from line
23 through line 27. This yields a time 
omplexity of O(N + N2 + N2 + N2) = O(N2). Interms of spa
e, the lists of o

urren
es of λ-mers 
ombined will take O(N) spa
e. The same
an be said of the arrays implementing the Confi sets. Similarly, the S
ore attribute of ea
h
on�guration 
an be implemented with a pair of arrays, taking O(N) spa
e for ea
h pair of
λ-mers. Sin
e these arrays 
an be re-used for ea
h pair, they will take no more than O(N)spa
e. The matrix itself requires O(|L(S)|2 ≤ |Σ|2λ) spa
e. The total spa
e requirements aretherefore in O(N + |Σ|2λ).4.2 Bi
lustering approa
hAs we have said, the matrix of 
o-o

urren
es gives us a view, for ea
h pair of λ-mers, of theabundan
e of its most 
ommon 
on�guration (or 
on�gurations). The next step is to try to
ombine these 
on�gurations to form larger patterns, possibly 
omplex motifs. In doing so,we are guided by the s
ore values 
omputed during the 
onstru
tion of the matrix.Consider the example in Fig. 4.3. The presen
e of a 
omplex motif with two 
omponentsof length 5 ea
h separated by a distan
e of 5 nu
leotides indu
es 12 
on�gurations of pairs of 4di�erent 4-mers. Let us suppose that this 
omplex motif is present in exa
tly 8 di�erent inputsequen
es. The s
ore of ea
h of these 
on�gurations is therefore no lower than 8. Admittingthat none of these 
on�gurations o

ur in other input sequen
es, Fig. 4.4 represents a sub-matrix of the matrix of 
o-o

urren
es that would be generated.This example illustrates the basi
 prin
iple of our approa
h to the inferen
e of 
omplex



34 CHAPTER 4. INFERENCE OF COMPLEX MOTIFSATTA TATT TGCA TTGCATTA 0 8 8 8TATT 8 0 8 8TGCA 8 8 0 8TTGC 8 8 8 0Figure 4.4: Sub-matrix indu
ed by TTGCAn5TATTA, assuming that it o

urs in 8 input sequen
esmotifs using the matrix of 
o-o

urren
es. However, what we set out to do is the reverse ofthe reasoning shown in this example, i.e., we want to identify 
ertain patterns in the matrixof 
o-o

urren
es that 
ould indi
ate the presen
e of a 
omplex motif.We begin by 
hara
terizing the patterns we are looking for.De�nition 4.8 (Diagonally-pun
tured bi
luster in a matrix of 
o-o

urren
es) A diagonally-pun
tured bi
luster, B(I,Λ), in a matrix of 
o-o

urren
es M is a sub-set of the elements aijofM des
ribed by a pair (I,Λ), with Λ ⊆ I, and de�ned as:
B(I,Λ) = {aij : i 6= j, i ∈ I, j ∈ I} ∪ {aii : i ∈ Λ}with i, j = 1, . . . , |L(S)|.A diagonally-pun
tured bi
luster in a matrix of 
o-o

urren
es is, therefore, an obje
t thatroughly 
orresponds to a square sub-matrix of M ex
ept that the elements in the diagonalhave an optional membership.This is an un
onventional type of bi
luster for two reasons. Firstly, the 
olumns thatbelong to the bi
luster are entirely de�ned by the indi
es of the rows (and vi
e-versa) and,se
ondly, the diagonal elements are not ne
essarily in
luded in the set of elements of thebi
luster. This is, arguably, not a bi
luster at all but sin
e we la
k a more appropriate termwe will still 
all it a bi
luster bearing in mind its spe
ial 
hara
teristi
s.De�nition 4.9 (h-valid diagonally-pun
tured bi
luster in a matrix of 
o-o

urren
es)An h-valid diagonally-pun
tured bi
luster, B(I,Λ), in a matrix of 
o-o

urren
es M is adiagonally-pun
tured bi
luster su
h that aij ≥ h for every aij ∈ B(I,Λ).



4.2. BICLUSTERING APPROACH 35The sub-matrix of Fig. 4.4 illustrates this 
on
ept. We 
an think of it as a diagonally-pun
tured bi
luster where I 
orresponds to the set of indi
es of the 4-mers ATTA, TATT, TGCAand TTGC, and where Λ = ∅. If this is the 
ase, we are in the presen
e of an 8-valid diagonally-pun
tured bi
luster.De�nition 4.10 (Cut of height h in a matrix of 
o-o

urren
es) A 
ut of height h ina matrix of 
o-o

urren
es, M, Ch(M) is a set of its elements de�ned as:
Ch(M) = {aij : aij = h}with i, j = 1, . . . , |L(S)|.The notion of 
ut in a matrix of 
o-o

urren
es will be useful later. At this point itis only worth noting that all h-valid diagonally-pun
tured bi
lusters have their elements in

⋃|S|
l=h Cl(M).Let us re
all that we are looking for patterns in the matrix of 
o-o

urren
es that 
anindi
ate the presen
e of a 
omplex motif. We are interested in identifying diagonally-pun
turedbi
lusters that in
lude as many elements of the matrix as possible and are h-valid for thehighest value of h attainable. Su
h a bi
luster would hopefully signal the presen
e of a 
omplexmotif in as many as h di�erent input sequen
es. As we have remarked earlier, a simple motifis just a parti
ular 
ase of a 
omplex motif and a diagonally-pun
tured bi
luster 
ould, infa
t, indi
ate the presen
e of a simple motif of length greater than λ. For instan
e, the motifAAATT indu
es the following 
on�gurations of 4-mers2 : (AAAT, AATT, 1) and (AATT, AAAT,−1),whi
h would 
orrespond to a diagonally-pun
tured bi
luster in the matrix of 
o-o

urren
es(provided the motif was frequent enough a
ross the input sequen
es).This approa
h thinks of 
omplex motifs (and simple motifs) as 
ompositions of 
on�gura-tions of λ-mers that will be shown in the matrix of 
o-o

urren
es in the form of diagonally-pun
tured bi
lusters. However, sin
e we 
onsider only the most 
ommon 
on�gurations ofpairs of λ-mers some information 
an be lost. In addition, the input sequen
es 
an 
ontainmany 
omplex motifs that will in turn indu
e many 
on�gurations of λ-mers, possibly in-terfering with the 
on�gurations indu
ed by other 
omplex motifs. It is important, then, to2It also indu
es 6 
on�gurations of 3-mers, 12 
on�gurations of 2-mers, et
. The impa
t of the 
hoi
e ofthe value of λ will be dis
ussed later.



36 CHAPTER 4. INFERENCE OF COMPLEX MOTIFSsystematize what we 
an and what we 
annot hope to �nd in sear
hing for bi
lusters in thematrix of 
o-o

urren
es.Firstly, we should note that this method is unable to identify simple motifs of length λ orshorter. This is due to the fa
t that the matrix of 
o-o

urren
es only 
onsiders 
on�gurationsof pairs of λ-mers, (mr,ms, d). All simple motifs that 
an be identi�ed are (λ + d)-mers.Likewise, 
omplex motifs whose 
omponents are shorter than λ will not be identi�ed.Se
ondly, motifs 
omposed of λ-mers whi
h repeat more than twi
e will indu
e multiple
on�gurations of the same pair of λ-mers with identi
al s
ores. Consider, for example, themotif AAATTTn3AATTAAT and suppose we 
hoose λ = 3. This motif will indu
e many 
on�gura-tions of 3-mers, in
luding (AAT, AAT, 8), (AAT, AAT, 12) and (AAT, AAT, 4). These 
on�gurationswill have the same s
ore and will be represented in the matrix of 
o-o

urren
es by a singleelement in the main diagonal. Furthermore, the 
on�gurations (AAT, ATT, 1) and (AAT, ATT, 9)will also be indu
ed and will be represented by the same pair of elements in the matrix of
o-o

urren
es. This is not a problem, in prin
iple, for it is still possible to infer the stru
tureof the 
omplex motif from these 
on�gurations. But the smaller the value we 
hoose for λ themore likely it is that 
on�gurations of λ-mers unrelated with the 
omplex motif be in
luded inthe bi
luster. For instan
e, if the motif AATAAT is at least as 
ommon as the 
omplex motif weare 
onsidering, then, the 
on�gurations it indu
es will pollute those indu
ed by the 
omplexmotif and will e�e
tively undermine our ability to infer the stru
ture of the 
omplex motif.Finally, an interesting motif 
ould fall short from being identi�ed. This 
an happen ifanother motif 
omposed by the same set of λ-mers (or a superset) is more frequent. Considerthe 
omplex motif we dis
ussed above and let λ = 3. If the motif ATTTn3TAAT is a di�erentbinding site but present in less sequen
es than AAATTTn3AATTAAT then it will be undete
tablefor the 
on�gurations it indu
es will not be most 
ommon 
on�gurations of the 3-mers that
ompose it. It is worth noting that if it o

urred in more sequen
es than the previous motif itwould have 
ompromised our ability to re
onstru
t it from the 
on�gurations it indu
es sin
esome would have been superseded by those with a higher s
ore. If it o

urred in exa
tly thesame number of sequen
es it would result in a merger of the sets of most 
ommon 
on�gurationsindu
ed by ea
h motif whi
h would likewise make the task of inferring the motifs mu
h harder.This illustrates the fa
t that the 
hoi
e of λ is 
riti
al. If it is too large it may miss smallermotifs and if it is too small it will render our method vulnerable to spurious 
on�gurations



4.2. BICLUSTERING APPROACH 37interfering with interesting motifs or similar motifs interfering with ea
h other. These short-
omings of our approa
h, albeit numerous, 
on
ern situations whi
h are very unlikely for anappropriate 
hoi
e of λ and are here presented for the sake of a thorough dis
ussion.It may happen, however, that by 
han
e several unrelated 
on�gurations of pairs of λ-mers have identi
al s
ores and end up being grouped to form a bi
luster. These false positivesmay be dete
ted by 
onsidering ea
h 
ontributing 
on�guration be
ause it is unlikely that thedistan
e values are 
ompatible in the sense that they 
annot be 
ombined to form a motif.An easier way to dete
t these spurious bi
lusters would be to keep, for ea
h 
on�guration,information about whi
h sequen
es it o

urred in. This would allow us to determine thatthese 
on�gurations were o

urring in di�erent sets of sequen
es and were therefore unrelated.If two motifs share 
o-o

urring pairs of λ-mers regardless of whether they 
on
ern thesame 
on�gurations or not, then the s
ore of the matrix element representing the shared pairwill take the value 
orresponding to the most frequent motif a
ross input sequen
es, i.e., thes
ore of the most 
ommon 
on�guration. This gives us our parti
ular plaid model:
aij = max

k=1,...,K
θkρijkwhere θk represents the 
ontribution of the kth bi
luster to the value of aij and ρijk, isa binary value representing the membership of the element aij to the kth bi
luster. If theinterferen
e refers to di�erent 
on�gurations then we may not be able to re
onstru
t the lessfrequent motif. However, if it refers to the same 
on�guration we 
an identify both.This gives us the right 
ue for the algorithm we propose. Algorithm 2 begins by 
onsideringthe matrix of 
o-o

urren
es, Mε

S , starting with the elements in Ch(Mε
S) with the highests
ore, h. Sin
e this matrix is symmetri
al, our starting point is either an element on the maindiagonal or a pair of elements from the upper and lower triangle respe
tively. In either 
ase,it is a diagonally-pun
tured bi
luster. For ea
h of these bi
lusters we will then greedily addrows/
olumns as long as the 
orresponding elements have a s
ore not lower then the s
ore ofour initial elements. The same is performed for the diagonal elements. Elements whi
h havealready been in
luded in a bi
luster are not used as a starting point for ulterior bi
lusters.This way we are e�e
tively seeking bi
lusters with high s
ores whi
h in
lude as many matrixelements as possible. By allowing initial bi
lusters to in
lude elements with a higher s
ore thanthe s
ore of the original elements we are addressing the observation we made while dis
ussing



38 CHAPTER 4. INFERENCE OF COMPLEX MOTIFSour plaid model. This 
an be translated in the fa
t that a 
on�guration whi
h o

urs in
h input sequen
es will a fortiori also o

ur in h′ < h input sequen
es. The algorithm will
ontinue 
onsidering elements with de
reasing s
ores until a minimum s
ore is rea
hed, belowwhi
h any bi
luster is deemed insu�
iently 
ommon to be of interest.The algorithm will 
onsider at most |L(S)|2 ≤ |Σ|2λ matrix elements as the starting pointand to ea
h of these initial bi
lusters will add at most |L(S)| ≤ |Σ|λ rows/
olumns. Atea
h tentative addition of rows/
olumns it will have to 
he
k whether the resulting bi
lusteris h-valid resulting in at most |L(S)|2 ≤ |Σ|2λ 
omparisons. This yields a time 
omplexityof O(|Σ|4λ). However, the larger the bi
lusters the less matrix elements will be used as astarting point, so this bound is not tight. Determining a tighter bound is quite di�
ult sin
ethe relation between the average size of the bi
lusters and the number of initial elements
onsidered is not easily established due to the fa
t that di�erent bi
lusters 
an e�e
tivelyshare many matrix elements.Algorithm 2 is a heuristi
 approa
h to our problem in the sense that it misses an unde�nedpart of the solution. In e�e
t, it 
an determine at most |L(S)|2 di�erent bi
lusters. Thereare, however, as many as 3

|L(S)|
3 possible bi
lusters, as we shall see.Consider a matrix of 
o-o

urren
es and another matrix with the same size. Ea
h elementof this new matrix holds the value 1 if the 
orresponding s
ore in the matrix of 
o-o

urren
esis not below h and 0 otherwise. This binary matrix 
an be seen as a graph G = (V,E). Ea
hrow/
olumn is a vertex and ea
h pair of verti
es is 
onne
ted by an edge if the 
orrespondingelement in the binary matrix has the value 1. We 
an e�e
tively ignore the values held by themain diagonal for this dis
ussion. Sear
hing for all largest diagonally-pun
tured bi
lusters inthis binary matrix is the same as sear
hing for all maximal 
liques in the 
orresponding graph.This problem is known to be NP-hard and there 
an be as many as 3

|V |
3 maximal 
liques in agraph [56℄.Our algorithm is, therefore, trying to solve the equivalent to the problem of enumerating allmaximal 
liques for ea
h s
ore h it 
onsiders. In fa
t, we do not a
tually require the bi
lustersto be maximal and sin
e the binary matrix for ea
h s
ore h tends to be sparse the number ofmaximum size bi
lusters is likely to be mu
h smaller than the theoreti
al maximum.On
e we have identi�ed the diagonally-pun
tured bi
lusters of interest we 
an then tryto re
onstru
t the motif that indu
ed the 
on�gurations we have grouped. To that e�e
t,
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Algorithm 2 Extra
ts bi
lusters in a matrix of 
o-o

urren
es1: for h = t to mins
ore do2: bi
lustersh ← ∅3: for all aij ∈ Ch(M) do4: if aij 6∈

⋃

Bk∈bi
lustersh
Bk then5: if i = j then6: I ← {i}7: Λ← {i}8: else9: I ← {i, j}10: Λ← ∅11: end if12: for k = 1 to |L(S)| do13: if B(I ∪ {k},Λ) is h-valid then14: I ← I ∪ {k}15: if B(I,Λ ∪ {k}) is h-valid then16: Λ← Λ ∪ {k}17: end if18: end if19: end for20: bi
lustersh ← bi
lustersh ∪ {B(I,Λ)}21: end if22: end for23: end for



40 CHAPTER 4. INFERENCE OF COMPLEX MOTIFSwe need to have previously taken note of the possibly multiple most 
ommon 
on�gurationsasso
iated with ea
h element in the matrix of 
o-o

urren
es. These 
on�gurations 
an easilybe assembled to re
onstru
t the original motif unless they have been polluted by 
on�gurationsindu
ed by other motifs as we have already dis
ussed. For small bi
lusters this assembly 
anbe done by inspe
tion. A general method of assembly is left for future work. However, as a�rst approa
h we 
an think of a weighted multi-graph whose verti
es 
orrespond to the λ-mersparti
ipating in the bi
luster and whose edges are labeled with the relative distan
es betweenea
h pair of λ-mers as indi
ated by the most 
ommon 
on�gurations in ea
h matrix elementgrouped in the bi
luster under 
onsideration. A traversal of this graph will purportedly beable to perform the assembly of the original motif.In this 
hapter we des
ribed a new method that 
an e�e
tively guide the parameter spe
i-�
ation for modern motif �nders by estimating the number of 
omponents and the 
omponentlength for 
omplex motifs (and simple motifs, whi
h are a parti
ular 
ase). It 
annot, how-ever, give a reliable indi
ation of the number of sequen
es in whi
h the re
onstru
ted motifso

ur in. An h-valid bi
luster is simply a bi
luster whose elements, i.e., whose 
on�gurationsof λ-mers o

ur in no less than h input sequen
es. We keep no information about whi
hsequen
es they a
tually o

ur in so we 
annot 
on�dently say that they all refer to the sameset of sequen
es. For this reason, and for the fa
t that it is, in e�e
t, simply an heuristi
approa
h it 
annot 
ompete with motif �nders. It 
an, instead, be used as a tool to 
apturethe 
hara
teristi
s of the input sequen
es and 
olle
t eviden
e of the presen
e of interestingmotifs whi
h 
ould otherwise go unnoti
ed.In the next 
hapter we present the results of the appli
ation of this method to bothsyntheti
 and biologi
al data sets.



Chapter 5
Results
In this 
hapter we present and dis
uss the result of applying the method proposed in this thesisto several data sets. The method was applied to both arti�
ially generated (syntheti
) datasets and to a real data set. The advantage of using syntheti
 data sets is the ability to spe
ifyexa
tly whi
h motifs we wish to plant in the data against a random ba
kground. This way we
an safely test our method sin
e we 
ontrol every aspe
t of the signal hidden in the randomsequen
es. However, syntheti
 data sets are still very di�erent from real sequen
es in thesense that these 
annot be a

urately modeled as motifs with a role in trans
ription regulationsurrounded by meaningless nu
leotides. Regulatory regions are the result of the interferen
e ofvarious signals whi
h are important for di�erent pro
esses. The distribution of nu
leotides inthese regions is not random sin
e it is in�uen
ed by many fa
tors like the evolutionary historyof the spe
ies. Other restri
tions 
ome from the very nature of these regions whi
h need tobe easily a

essed by the trans
ription initiation 
omplex and are therefore usually ri
her inA-T 
ontent (A-T bonds are weaker than C-G bonds). It is, therefore, important to test ourmethod with real data. To this e�e
t we 
hose to apply it to a well 
hara
terized data set [57℄for whi
h a binding site has been determined with high 
on�den
e.5.1 Syntheti
 DataThe syntheti
 data sets that we will des
ribe in this se
tion were produ
ed using a simplerandom generator based on ran2 [58℄. Ea
h data set, unless otherwise indi
ated, 
onsists of100 sequen
es of length 600. The length was 
hosen to be 600 to 
onform to the average length41



42 CHAPTER 5. RESULTSof the sequen
es that will be used in the analysis of real data.There are two important parameters in our method: λ whi
h de�nes the length of our
λ-mers and ε whi
h de�nes the toleran
e with whi
h we s
ore 
on�gurations of λ-mers. Re-
all that the ε-tolerant s
ore of a 
on�guration, (mr,ms, d), 
onsiders the 
ontribution of all
on�gurations (mr,ms, d

′) su
h that d′ ∈ [d− ε, d + ε].We did not 
onsider the 
ases where λ ≤ 2 be
ause, as we mentioned in the previous
hapter, this will in
rease the number of most 
ommon 
on�gurations in ea
h element of thematrix of 
o-o

urren
es making the task of identifying motifs harder. The 
ases in whi
h
λ > 4 have two in
onvenients. Not only the generated matrix is ex
eedingly large but wewill also be unable to identify 
omplex motifs with 
omponents shorter than 5 nu
leotides orsimple motifs less than 6 nu
leotides long. Our results will, therefore, only show the 
aseswhere λ = 3 and λ = 4. We will also only 
onsider the 
ases where ε = 0 and ε = 1 sin
elarger values for our toleran
e will in�ate the s
ore of most 
on�gurations. In any 
ase, we donot dis
ard the interest of performing a broader study.Re
all that Algorithm 2, whi
h identi�es diagonally-pun
tured bi
lusters also uses theparameter mins
ore referring to the minimum s
ore required for ea
h element of a bi
lusterto allow it to be identi�ed. In every analysis performed in this 
hapter we have 
onsideredmins
ore = 10.In the following dis
ussion we will refer to s
ore levels or simply levels to talk aboutfeatures whi
h be
ome apparent when looking at elements in the matrix of 
o-o

urren
eswith a given s
ore. Therefore, when we refer to all elements at level h we are referring to allelements in the matrix of 
o-o

urren
es, M, with s
ore h or, equivalently, to all elementsin Ch(M). Similarly, when we refer to bi
lusters identi�ed at level h we mean all bi
lusterswhose elements with least s
ore are at level h (h-valid bi
lusters).5.1.1 No planted motifsThe �rst step in this analysis is to 
hara
terize the noise. That is, we want to 
hara
terize theoutput of our method when applied to random sequen
es with no planted motifs. This givesus a baseline with whi
h to 
ompare results.In Fig. 5.1 we 
an see the superposition of the distribution of the s
ores of 
on�gurations(matrix elements) from three di�erent random data sets with no planted motifs. We 
an



5.1. SYNTHETIC DATA 43distinguish three lo
al maxima in the graph: one around level 90, another 
lose to level 45and yet another slightly above level 25. We argue that the maximum at the highest level
orresponds to the number of expe
ted o

urren
es of motifs of length 4 in a data set withthese 
hara
teristi
s. Ea
h motif of length 4 has a probability of (1

4
)4 = 1

256
. In a sequen
e oflength 600 it has many opportunities to o

ur. A naive approa
h would indi
ate that givena probability of 1

256
and 600 − 4 + 1 = 597 opportunities of o

urren
e one would expe
t

2.33 o

urren
es of motifs of length 4 in every sequen
e, yielding a s
ore of 100 for ea
h
orresponding 
on�guration. However, this approa
h ignores the fa
t that not all motifs 
anbe overlapped (thus not having those many opportunities of o

urren
e). The true expe
tednumber of o

urren
es is surely below 2.33. So we would expe
t our lo
al maximum to besomewhere 
lose to but below 100. The same reasoning 
an be applied to motifs of length5 yielding an expe
ted number of o

urren
es 
lose to 0.58 and 
ould, therefore, explain these
ond lo
al maximum. This lo
al maximum is higher simply be
ause more elements of thematrix are required to 
ompose a motif of length 5 than a motif of length 4. The remaininglo
al maximum is simply the 
ombination of the expe
ted number of o

urren
es for less likelypatterns. It is also worth noting that the height of the maxima at lower levels depends on theheight of the maxima at higher levels. This is due to the fa
t that the s
ore of a 
on�gurationrefers only to a most 
ommon 
on�guration. Therefore, if a matrix element is 
ommited torepresent a motif it 
annot be used to represent a less likely motif.Using this model we 
an predi
t the shape of a similar plot for data sets with varyingsequen
e length. For a data set with longer sequen
es we expe
t the maximum referring tomotifs of length 4 to be higher and 
loser to level 100 re�e
ting both the in
reased numberof matrix elements 
ommited to represent these motifs and the greater likelihood of theiro

urren
e in input sequen
es. In a data set with shorter sequen
es we expe
t all maximato be at lower levels and to be 
loser to one another. Fig. 5.2 shows the number of matrixelements per s
ore level of a data set with no planted motifs and with sequen
es of length2000. Fig. 5.3 shows the same but for a data set with sequen
es of length 100.Another interesting plot is the number of identi�ed bi
lusters per s
ore level. Fig. 5.4shows this information for the data sets analyzed in Fig. 5.1. Both plots have a similar shapeshowing that the number of bi
lusters for a given s
ore level is, in this 
ase, highly 
orrelatedwith the number of matrix elements with the same s
ore. This is not suprising, espe
ially if



44 CHAPTER 5. RESULTS

20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

Elements per Score Level

Level

N
um

be
r 

of
 E

le
m

en
ts

Figure 5.1: Number of Elements per S
ore Level in 3 syntheti
 data sets without plantedmotifs (λ = 3, ε = 0, |S| = 100, |Si| = 600)
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Figure 5.2: Number of Elements per S
ore Level in a syntheti
 data set without planted motifs(λ = 3, ε = 0, |S| = 100, |Si| = 2000)the identi�ed bi
lusters have a low number of elements. Let us de�ne the volume of a bi
luster,
B(I,Λ), as the number of matrix elements 
overed by B(I,Λ). Fig. 5.5 shows the averagevolume of bi
lusters per s
ore level for the same data sets. We 
an see that the average volume
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Figure 5.3: Number of Elements per S
ore Level in a syntheti
 data set without planted motifs(λ = 3, ε = 0, |S| = 100, |Si| = 100)of bi
lusters is very low (below 8, but mostly around 1-2) down until around s
ore level 60.Below this point many spurious bi
lusters are identi�ed and below level 20 they 
over almostthe entirety of the 
o-o

urren
e matrix.
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Figure 5.4: Number of Bi
lusters per S
ore Level in 3 syntheti
 data sets without plantedmotifs (λ = 3, ε = 0, |S| = 100, |Si| = 600)
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Figure 5.5: Average Bi
luster Volume per S
ore Level in 3 syntheti
 data sets without plantedmotifs (λ = 3, ε = 0, |S| = 100, |Si| = 600)These results show that if we planted a motif in these data sets and made it o

ur in lessthan 20 input sequen
es it would be indistinguishable from the noise. The same, however,does not happen if we analyze the same data sets but having λ = 4. In Fig. 5.6 we presentthe results for this analysis.By using λ = 4 our method be
omes oblivious to motifs of length 4 whi
h explains thedisappearan
e of the 
orresponding lo
al maximum in the number of elements per s
ore levelplot. The overall magnitude of the noise is also greatly de
reased (note that the 
o-o

urren
ematrix in this 
ase has 65536 elements, 
ompared to the 4096 elements in the 
ase where
λ = 3). The highest s
oring most 
ommon 
on�guration is now down to a mu
h lower level(level 62) and the average bi
luster volume in
reases with de
reasing s
ore levels with a mu
hgentler slope.It is 
lear that a higher toleran
e level will in
rease the noise in any data set. The onlyreason why our method 
onsiders using toleran
e at all is the fa
t that in some 
ases it mayin
rease the signal more e�
iently than the noise. The only question at this point is howmu
h in
rease in noise is one to expe
t. Fig. 5.7 gives us an idea of the impa
t of 
onsidering
ε = 1 for the same three data sets 
onsidered so far, maintaining λ = 4.We 
an see a signi�
ant in
rease in noise magnitude, espe
ially for lower s
ore levels. We



5.1. SYNTHETIC DATA 47
10 20 30 40 50 60

0
10

0
20

0
30

0
40

0

Elements per Score Level

Level

N
um

be
r 

of
 E

le
m

en
ts

10 20 30 40 50 60

0
10

0
20

0
30

0
40

0

Biclusters per Score Level

Level

N
um

be
r 

of
 B

ic
lu

st
er

s

10 20 30 40 50 60

2
4

6
8

10

Average Bicluster Volume per Score Level

Level

A
ve

ra
ge

 V
ol

um
e

Figure 5.6: Number of Elements, Number of Bi
lusters and Average Bi
luster Volume per S
oreLevel in 3 syntheti
 data sets without planted motifs (λ = 4, ε = 0, |S| = 100, |Si| = 600)should, therefore, be 
onservative in using tolerant s
ores.5.1.2 Planted MotifsWe will now address the 
ase where we plant motifs in the input sequen
es. As we mentionedearlier, all data sets have 100 sequen
es with 600 nu
leotides. Tab. 5.1 summarizes the 
aseswe shall 
onsider, indi
ating whi
h motifs were planted and the per
entage of input sequen
es
ontaining the planted motifs. The motifs were planted only on
e in ea
h of the randomlysele
ted input sequen
es.For ea
h 
ase we indi
ate what is to be expe
ted and we present a general des
ription ofthe output of our method. In all 
ases only parameters λ = 4 and ε = 0 are used.
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Figure 5.7: Number of Elements, Number of Bi
lusters and Average Bi
luster Volume per S
oreLevel in 3 syntheti
 data sets without planted motifs (λ = 4, ε = 1, |S| = 100, |Si| = 600)Case Motif(s) % of Input Sequen
esA AAAAA 80%B AAAAn5TTTT 80%C AAAATn20TTTTA 80%D AAAATn5TTTTAn5CCCCT 80%E AAAAA 40%AAAATn20TTTTA 30%AAAATn5TTTTAn5CCCCT 30%Table 5.1: Motifs planted in syntheti
 data sets and the per
entage of sequen
es 
ontainingthem for 
ases A, B, C, D and E
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ase we have planted the motif AAAAA whi
h generates the following 
on�gurations:
(AAAA, AAAA, 1) and (AAAA, AAAA,−1). These 
on�gurations are asso
iated with a single diag-onal element in the matrix of 
o-o

urren
es (on
e they prove to be most 
ommon 
on�g-urations). We expe
t to extra
t the bi
luster B({i}, {i}) where i is the index of the 4-mer
AAAA.Fig. 5.8 shows the relevant results of the appli
ation of our method to 
ase A. The plotsare almost identi
al to the ones obtained for the random data sets with no planted motifs,shown in Fig. 5.6. The di�eren
e lies in the fa
t that bi
lusters were found above s
ore level62 and the existen
e of some small perturbations around level 60. The introdu
tion of ourmotif in the otherwise random sequen
es 
hanges the proportion of nu
leotides and, therefore,the likelihood of o

urren
e of some motifs. Tab. 5.2 shows the top 5 s
oring motifs identi�edwith our method. The assembly of the motifs from the identi�ed bi
lusters was performed byinspe
tion. # Motif S
ore1 AAAAA 852 TGAAA 643 AAAAG 634 GAAAA 625 AAAAC 61... ... ...4271Table 5.2: Top s
oring motifs inferred from the top s
oring bi
lusters for 
ase AAs expe
ted, the top s
oring motif is the one whi
h was planted. The following motifshave 
learly bene�ted from the in
reased proportion of A's in the data set but still s
oresigni�
antly less than the planted motif and not mu
h higher than the top s
oring motif foundin data sets with no planted motifs. It is also interesting to note that the planted motif s
oreshigher than what is warranted by the number of sequen
es in whi
h it was planted. This isalso not surprising sin
e the motif in itself is very likely to o

ur in a random sequen
e of
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Figure 5.8: Number of Elements, Number of Bi
lusters and Average Bi
luster Volume perS
ore Level for 
ase A (λ = 4, ε = 0, |S| = 100, |Si| = 600)the spe
i�ed length. The planted o

urren
es and the spurious o

urren
es have 
ombined toyield a s
ore of 85.Case BIn this 
ase we have planted the motif AAAAn5TTTT. It generates the following 
on�gurations:
(AAAA, TTTT, 8) and (TTTT, AAAA,−8). Fig. 5.9 summarizes the results obtained for this 
ase.The plots shown for this 
ase are quite similar to those obtained in the previous 
ase,as expe
ted. Likewise, the top s
oring motif is expe
ted to be the planted motif and thefollowing are likely to be simple motifs derived from the two 
omponents of the 
omplex motifthat was pla
ed in 80 of the input sequen
es. Tab. 5.3 shows the top s
oring motifs, 
on�rmingour predi
tions. Unlike the previous 
ase, the s
ore of the planted motif was not in�ated by
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Figure 5.9: Number of Elements, Number of Bi
lusters and Average Bi
luster Volume perS
ore Level for 
ase B (λ = 4, ε = 0, |S| = 100, |Si| = 600)pre-existing o

urren
es in the random sequen
es. This is due to the fa
t that a motif withnon-
ontiguous 
omponents is very unlikely to o

ur by 
han
e, as we have mentioned inprevious 
hapters.Case CThe planted motif for 
ase C is AAAATn21TTTTA, whi
h generates the following set of 
on�gu-rations: (AAAA, AAAT, 1), (AAAT, AAAA,−1), (TTTT, TTTA, 1), (TTTA, TTTT,−1), (AAAA, TTTT, 24),
(TTTT, AAAT,−24), (AAAA, TTTA, 25), (TTTA, AAAA,−25), (AAAT, TTTT, 23), (TTTT, AAAT,−23),
(AAAT, TTTA, 24) and (TTTA, AAAT,−24). Fig. 5.10 shows the plots obtained for this 
ase. It isinteresting to note the peak on the plot of the average bi
luster volume per s
ore level thatappears at level 80. There is only one bi
luster at this level and it refers to the planted motif



52 CHAPTER 5. RESULTS# Motif S
ore1 AAAAn5TTTT 802 TTTTC 643 AAAAC 634 CAAAA 635 AAAAT 62... ... ...4272Table 5.3: Top s
oring motifs inferred from the top s
oring bi
lusters for 
ase B# Motif S
ore1 AAAAT 902 TTTTA 903 AAAATn20TTTTA 804 GAAAA 655 AAATG 63... ... ...4291Table 5.4: Top s
oring motifs inferred from the top s
oring bi
lusters for 
ase Cwhi
h indu
es a bi
luster of volume 12 (
orresponding to the number of 
on�gurations listedabove).Contrarily to previous 
ases, the top s
oring motif is not the planted motif, as shown inTab. 5.4. Ea
h 
omponent of the planted 
omplex motif has 
ombined with random o

ur-ren
es of identi
al 5-mers to obtain a s
ore higher than that of the planted motif.Case DIn 
ase D, a 
omplex motif with three 
omponents was planted in the input sequen
es:
AAAATn5TTTTAn5CCCCT. This motif generates as many as 30 
on�gurations of pairs of 4-mers. Fig. 5.11 shows the relevant information for this 
ase. Just like in 
ase C, the planted
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Figure 5.10: Number of Elements, Number of Bi
lusters and Average Bi
luster Volume perS
ore Level for 
ase C (λ = 4, ε = 0, |S| = 100, |Si| = 600)motif is listed among the top s
oring motifs, as 
an be seen in Tab. 5.5 and ea
h 
omponents
ores higher than the planted motif due to the 
ontribution of spurious o

urren
es.Case EThis 
ase is more interesting be
ause the motifs planted in 
ases B, C and D have all beenplanted in this data set. Furthermore, ea
h of these motifs was planted in mu
h less inputsequen
es. Fig. 5.12 summarizes the results for 
ase E. These plots are unsurprisingly mu
hdi�erent from the ones shown in the previous 
ases, showing a peak around s
ore level 30 forthe average bi
luster volume plot.Tab. 5.6 shows a portion of the list of motifs inferred from the identi�ed bi
lusters. The tops
oring motifs are the result of the 
ontribution of 
omponents of the planted 
omplex motifs
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Figure 5.11: Number of Elements, Number of Bi
lusters and Average Bi
luster Volume perS
ore Level for 
ase D (λ = 4, ε = 0, |S| = 100, |Si| = 600)# Motif S
ore1 AAAAT 902 CCCCT 893 TTTTA 864 AAAATn5TTTTAn5CCCCT 805 ACCCC 66... ... ...4296Table 5.5: Top s
oring motifs inferred from the top s
oring bi
lusters for 
ase D



5.1. SYNTHETIC DATA 55
10 20 30 40 50 60 70

0
10

0
20

0
30

0
40

0

Elements per Score Level

Level

N
um

be
r 

of
 E

le
m

en
ts

10 20 30 40 50 60 70

0
10

0
20

0
30

0
40

0

Biclusters per Score Level

Level

N
um

be
r 

of
 B

ic
lu

st
er

s

10 20 30 40 50 60 70

2
4

6
8

10
14

Average Bicluster Volume per Score Level

Level

A
ve

ra
ge

 V
ol

um
e

Figure 5.12: Number of Elements, Number of Bi
lusters and Average Bi
luster Volume perS
ore Level for 
ase E (λ = 4, ε = 0, |S| = 100, |Si| = 600)with spurious o

urren
es, not unlike we have seen in previous 
ases. What is interestingto observe are the results 
on
erning the planted motifs. The simple motif that was planted(AAAAA) was not re
overed in isolation. Instead, it appears merged with spurious o

urren
esof other 
on�gurations. This is not surprising sin
e we planted the simple motif in only afew sequen
es (40), mu
h less than the s
ore level below whi
h many spurious o

urren
es of
5-mers start to be 
ommon, whi
h is around s
ore level 55, as shown in Fig. 5.6.Motifs listed in ranks 1010 through 1015 were the only 
omplex motifs re
overed by ourmethod. They all resemble the planted 
omplex motifs but none mat
hes any of them exa
tly.This is, on
e again, not surprising. If we inspe
t motif in rank 1015 it is almost an exa
tsuperposition of the two 
omplex motifs that were planted in the input sequen
es. All theother motifs are simply subsets of the 
on�gurations indu
ed by our 
omplex motifs. The
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ore1 AAAAT 752 TTTTA 753 AAAAAT 704 AAAAAC 665 CAAAA 63... ... ...1010 AAATn5TTTT 321011 AAAATn5TTTTn6CCCC 311012 AAAAn6TTTTn6CCCCT 311013 AAAATn5TTTTAn11TTTA 311014 AAAAn6TTTTAn6CCCTn1TTTA 311015 AAAATn5TTTTAn5CCCCTn1TTTA 30... ... ...4260Table 5.6: Top s
oring motifs inferred from the top s
oring bi
lusters for 
ase Eexplanation for this result is straightforward. The two 
omplex motifs that were plantedin the data set were quite similar and indu
ed almost identi
al 
on�gurations, ex
ept forthose referring to the pairs (AAAA, TTTT), (AAAA, TTTA), (AAAT, TTTT) and (AAAT, TTTA) whi
hdi�ered in their relative distan
es. A spurious o

urren
e of one of these 
on�gurations inone of the input sequen
es was su�
ient to deprive the other of its status of most 
ommon
on�guration. In this 
ase, 
on�gurations (AAAA, TTTT, 24), (TTTT, AAAA,−24), (AAAT, TTTT, 23)and (TTTT, AAAT,−23) were the ones whi
h got dis
arded making it impossible to fully re
overthe planted motif AAAATn20TTTTA. On the other hand, the other 
omplex motif was fullyre
overed. The motif that is listed in rank 1015 was inferred by inspe
tion of the identi�edbi
luster and what is shown does not 
onvey all the information that the bi
luster o�ers.It is true that many 
on�gurations that pertain to motif AAAATn20TTTTA are interwinedwith those generated by AAAATn5TTTTAn5CCCCT but it is still possible to dis
riminate betweenthe two. We de
ided to present the re
onstru
ted motif in this way be
ause both 
on�gurations
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(AAAA, TTTA, 10) and (AAAA, TTTT, 25) are asso
iated with the bi
luster, but, for instan
e, thereis only a pair of 
on�gurations involving 4-mers TTTA and CCCC whi
h are the ones indu
edby AAAATn5TTTTAn5CCCCT. This allows us to suspe
t that di�erent signals have 
ombined inthis bi
luster and we 
an, in this 
ase, easily distinguish the two.This 
ase has illustrated some of the more 
omplex situations that we 
an fa
e using theproposed method. It is, however, a very arti�
ial situation be
ause the planted motifs arequite similar. These situations are unlikely to o

ur with real data sets if one 
hooses anappropriate value for λ.5.2 Biologi
al DataAs we said previously, syntheti
 data sets are 
onvenient for 
ontrolled tests but they fall shortof being a reliable model of regulatory regions. In this se
tion we present the results of theappli
ation of our method to a real data set [57℄. This data set is 
omposed of various σ54-dependent promoter sequen
es of Es
heri
hia 
oli. The data set is 
omposed of 69 sequen
eswith an average length of 580 nu
leotides.We begin by analyzing the plots obtained for the number of elements, bi
lusters andaverage bi
luster volume per s
ore level by applying our method using λ = 4 and ε = 0 shownin Fig. 5.13. These plots are signi�
antly di�erent from the ones obtained for the syntheti
data. There are no distinguishable lo
al maxima whi
h suggests that these sequen
es are notrandom as we have already argued.In Tab. 5.7 we list a portion of the list of motifs assembled by inspe
tion of the identi�edbi
lusters. The 
omplex motifs that are listed 
onsist of the only 
omplex motifs identi�edabove s
ore level 20. In [57℄ a 
onsensus sequen
e for the promoter of these sequen
es wasobtained by a 
ombination of geneti
 eviden
e and putative promoters reported in the lit-erature based on sequen
e similarity. The 
onsensus sequen
e reported by the authors was:
NNNNmrNrYTGGCACGNNNNTTGCWNNwNNNNN where R stands for purines, Y for pyrimidines, W for Aor T and, as usual, N stands for any nu
leotide.The 
omplex motifs obtained using our method are in absolute a

ordan
e with the 
on-sensus sequen
es reported by the authors.As we dis
ussed in previous 
hapters, our method is not guaranteed to �nd all interestingmotifs due to its heuristi
 nature and is also vulnerable to reporting false positives. It should,
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Figure 5.13: Number of Elements, Number of Bi
lusters and Average Bi
luster Volume perS
ore Level for the σ54 data set (λ = 4, ε = 0, |S| = 69, average|Si| = 580)therefore, rely on a motif �nder to validate its output. The bi
lusters identi�ed in this 
asesuggest the existen
e of a 
omplex motif with two 
omponents separated by a gap of 5-7 nu
leotides. If we use the SMILE algorithm [5℄ and ask for all 
omplex motifs with a�rst 
omponent between 4 and 6 nu
leotides long and a se
ond 
omponent between 4 and 5nu
leotides long separated by a gap between 5 and 7 nu
leotides long o

urring in at least 20sequen
es the algorithm reports one motif only:
TGGC_TTGCTThis suggests that our method is arti�
ially in�ating the s
ores of the bi
lusters be
ause itdoes not perform a 
ross-
he
k of the sequen
es in whi
h ea
h 
on�guration o

urs. If we lowerthe number of sequen
es we require the motif to o

ur in we re
over all the motifs reportedby our method (not shown).
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ore1 CTGGC 542 TGGCA 533 GGCAC 494 TTGCT 425 CCCGC 40... ... ...40 TGGCn7TTGC 35... ... ...125 TGGCAn6TTGC 30... ... ...270 TGGCAn6TTGCT 25... ... ...537 GGCACn5TTGC 20... ... ...1887Table 5.7: Top s
oring motifs inferred from the top s
oring bi
lusters for the σ54 data setOther algorithms, like MEME [23℄, are, in prin
iple, able to �nd interesting features indata sets. We have used MEME to analyze this data set. A 
ommon way to present resultsreported by MEME is a multi-level 
onsensus sequen
e. The nu
leotides in the top row arethe most likely for ea
h position, and nu
leotides at lower rows are de
reasingly probable. Themulti-level 
onsensus sequen
es obtained with MEME for the σ54 data set was the following:G C T G G C A C G G C T C T T G C TT T T A C G C G C AThe multi-level 
onsensus sequen
e reported by MEME is in a

ordan
e with both thedo
umented 
onsensus sequen
e and the motifs extra
ted using the method proposed in thisthesis. It is not so 
lear, however, in elu
idating the 
omplex stru
ture of the motif whi
h isthe main goal of our approa
h.
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Chapter 6
Con
lusions and Future Work
In this thesis we have presented an e�e
tive method to guide modern 
ombinatorial motif�nders. We have seen that, up to a point, our method is 
apable of reporting the relevantmotifs by itself. We have demonstrated this ability in the results presented in 
hapter 5.We have already dis
ussed the short
omings of our approa
h whi
h refer to situationswhere the method is unable to dete
t all the important 
on�gurations ne
essary to assemblea motif present in the input sequen
es. We argue that most of these situations are unlikelyto o

ur in pra
ti
e and that this method stands as a useful pra
ti
al tool to guide the sear
hfor motifs, espe
ially those exhibiting a 
omplex nature.Notwithstanding the fa
t that most of the bi
lusters identi�ed by our method suggestthe presen
e of motifs whi
h 
an easily be assembled by inspe
tion of the 
on�gurationsasso
iated with the bi
luster elements, we still la
k an automated pro
edure to assemble thesemotifs. This is a task that 
an be 
hallenging in some spe
ial 
ases where multiple motifsend up grouped in the same bi
luster or when some 
on�gurations are masked due to signalinterferen
e. It is, however, an interesting and useful pro
edure that deserves attention.Another issue is the ability to a

urately predi
t the exa
t number of input sequen
eswhere the 
on�gurations grouped in a bi
luster simultaneously o

ur. As we have dis
ussedin previous 
hapters the s
ore level at whi
h a bi
luster is identi�ed is an upper bound ofthe simultaneous o

urren
es of all asso
iated 
on�gurations. Reporting the exa
t number ofsequen
es involves keeping tra
k of whi
h input sequen
es ea
h 
on�guration o

urs in. Thisimprovement would also be useful to dete
t and dis
ard spurious bi
lusters that result fromgrouping 
on�gurations that never o

ur in the same input sequen
es.61



62 CHAPTER 6. CONCLUSIONS AND FUTURE WORKAnother important improvement to our method would be o�ering support for degeneratemotifs, i.e., the ability to 
ope with nu
leotide substitutions as is the 
ase with many modernmotif �nders. This is not a trivial matter and involves, besides rede�ning most of the 
on
eptsintrodu
ed in 
hapter 4, 
onsidering not only 
o-o

urren
es of pairs of λ-mers present in theinput sequen
es but also those of λ-mers at some pre-de�ned Hamming distan
e of the former.We have mentioned in 
hapter 4 that the number of bi
lusters that our bi
lustering al-gorithm is able to identify (|L(S)|2) is mu
h less than the theoreti
al maximum number ofbi
lusters (3 |L(S)|
3 ). This is due to the fa
t that the algorithm performs a greedy sear
h, missingan undetermined part of the solution. We have argued that this 
an be mitigated by the fa
tthat, in pra
ti
e, the generated matrix of 
o-o

urren
es is sparse at ea
h level 
onsidered. Itwould be interesting, however, to 
ompare the results obtained using this algorithm with an-other performing an exhaustive sear
h. It may prove worthwhile to implement a randomizedversion of the algorithm whereby rows/
olumns would be randomly targeted for addition, in
onjun
tion with a beam sear
h approa
h whi
h would 
ombine, at ea
h level, the bi
lustersobtained by 
onsidering initial bi
lusters in di�erent orderings.Finally, it is 
lear from the results presented in 
hapter 5 that many of the identi�edbi
lusters are due to random o

urren
es of short simple motifs. A user of our method wouldgreatly bene�t from a statisti
al signi�
an
e assessment of the reported bi
lusters. Despitethe fa
t that listing the bi
lusters by de
reasing s
ore values already 
onstitutes a signi�
anthelp in dis
riminating the output it is insu�
ient to isolate interesting motifs o

urring in fewinput sequen
es.
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