
Programming Exercices
Series 2

Nuno D. Mendes

Exercices

1. Euromillions [easy]

Write a program that gives you a possible outcome of a Euromillions lottery.

Hint: Check the random package and the set data type.

2. Symbol Generator [easy]

Write a program that, given a dictionary whose keys are symbols (characters) and whose
values are probabilities, generates a string of a given length with each symbol occurring
with the predetermined probability.

If the keys of the dictionary happen to be strings with more than one character, ignore
the remaining characters and consider only the first one. Ignore all dictionary entries
whose keys are not strings or if the string is empty. If the values of the dictionary
don’t add up to one or are, in effect, greater than one, make the necessary adjustments.
Ignore dictionary entries whose values are not non-negative real numbers.

3. Rational numbers [medium]

Create a new class Rational representing rational numbers. Rational numbers should
be represented by a quotient, so you should keep a numerator and a denominator.
You should be able to perform all basic arithmetic operations with these numbers by
overloading the usual operators (+, −, ∗ and /). You should also be able to compare
rational numbers using the usual comparison operators. The string representation of
a rational number should yield the irreducible version of the corresponding quotient.
(e.g. a rational number specified as 4

6 should be readily converted to 2
3). In order to

do this you can use one of the oldest algorithms known, Euclid’s algorithm (300 BC),
to determine the greatest common divisor between the numerator and the denominator:

1



2

def gcd(p,q):

while q:

p, q = q, p % q

return p

With the class Rational implemented one should be able to write the following expres-
sions:

p = Rational(4,6)

q = Rational(9,10)

if p < q:

a = p + q

elif p > 2 * q:

b = p * q

elif p > q:

c = p / q

4. Brownian motion simulation [medium]

Brownian motion consists of the random trajectories described by minute particles im-
mersed in or floating on the surface of a fluid. The conditional probability distribution
of the position of one of these particles at time t + dt is a distribution N(p + µdt, σ2dt),
if p is the position of the particule at time t. µ is called the drift velocity and σ the noise.

One way to approximate this result when µ = 0 and σ = 1, is to model the trajectory of
each particle in the 3D space by successive observations of discrete uniformly distributed
random variables X, Y, Z _ Uniform(−1, 1) so that the next position of a particule is a
triple of random variables (px+X, py +Y, pz +Z) given the current positions (px, py, pz).

The goal of this exercise is to make a movie of N particles engaging on Brownian motion
in a closed volume. If a particle happens to hit the wall of your volume, make it appear
on the opposite side.

You can adopt the following strategy:

• Given a parameter N for the number of particles, make your program write an
R script with a series of coordinate lists. These coordinate lists should be the
coordinates of your particles at each time step. This R script should also generate
as many PNG files as the number of time steps S you are considering (consider at
least 100 time steps);



3

• Invoke R from your Python program to run the script you have automatically gen-
erated;

• You have now S PNG files representing various moments in time. Make sure your
files are named in such a way that lexicographic order (alphabetic order) reflects
chronology. You can now invoke a shell command from your program to make a
movie from all your PNG files: convert -delay DELAY *.png your movie.mng,
where DELAY is the number of milliseconds each PNG image will occupy in the
movie.

• You can now watch your movie using konqueror.

Make sure that your program cleans up after you, ie, any file you may have created
must be deleted before exiting (except, of course, your movie). Moreover, every time
you create a new (temporary) file, try to devise a strategy to avoid possible name con-
flicts (you should not accidently overwrite any pre-existing file).

5. Sequence alignment [medium]

Implement the Needleman-Wunsch alignment algorithm. Your program should read a
FASTA file and align the first two sequences found therein. You can assume you will
only find DNA sequences. In the end, your program should report the alignment to a
file showing the matches and the gaps. For example:

Alignment score: α
ATTTTGGgGT-----GGGGAAAAGGTTG
ATTTTGGcGTaaaaaGGGGAAAAGGTTG

Where α is the score of your alignment, which will depend on the way you decide to
score your matches, mismatches and gaps.

6. Pairwise shortest-paths in Graphs [advanced]

A directed graph G = (V,E) is a pair where V is a set of vertices and E is a set of
ordered pairs (v1, v2) with v1, v2 ∈ V . A sequence of vertices Γ = v1v2 . . . vn is a path
in G from v1 to vn iff ∀1≤i≤nvi ∈ V and ∀1≤i<n(vi, vi+1) ∈ E. The number n of vertices
in the path Γ is said to be the lenght of the path and is denoted by |Γ|.

(a) Choose an appropriate representation for graphs, considering that, in general, they
are sparse, ie, in most cases for any two vertices u, v ∈ V , (u, v), (v, u) 6∈ E.



4

(b) Given parameters n and p your program should generate a graph G with n vertices
and such that for any two vertices u, v ∈ V , (u, v) ∈ E with probability p.

(c) A second program should, given a graph G = (V,E) and two vertices u, v ∈ V , de-
termine a path Γ from u to v such that |Γ| ≤ |Γ′|, for any other path Γ′ from u to v.

For the sake of simplicity you are advised to identify vertices with integers.

Notes

1. Check with Python documentation if you have any doubts. You can find the language
reference manual at http://docs.python.org/ref/ref.html and the Python Tutorial at
http://docs.python.org/tut/tut.html. Remeber to use the help function on interactive
mode, and the pydoc command in the command-line

2. Make sure your code is elegant and readable and that the appropriate error messages
are printed every time the assumptions about program arguments are violated

3. Be lazy = be smart! Try to produce programs that require you to write the least amount
of code

4. You are expected to complete this series of exercises until November, 11

5. To obtain comments, suggestions, to dissipate any doubts and to deliver your code you
should write to ndm@algos.inesc-id.pt

http://docs.python.org/ref/ref.html
http://docs.python.org/tut/tut.html

