
Finding Common Motifs in DNA
Sequences

A survey

Nuno D. Mendes

ndm@algos.inesc-id.pt

Instituto Superior Técnico

Universidade Técnica de Lisboa

Nuno D. Mendes, IST/UTL – p. 1/46

Outline

Some biology

The problem

An early graph-based approach: WINNOWER

Avoiding the explicit search for cliques: PRUNER

An approach based on suffix-trees: SMILE

Merging WINNOWER and SMILE: MITRA

Conclusions

Nuno D. Mendes, IST/UTL – p. 2/46

Some Biology

Nuno D. Mendes, IST/UTL – p. 3/46

Some Biology

Transcriptional regulation is one the most important

mechanisms regulating gene expression

Nuno D. Mendes, IST/UTL – p. 4/46

Some Biology

Transcriptional regulation is one the most important

mechanisms regulating gene expression

Directed by proteins which specifically bind to motifs

present in regulatory regions

Nuno D. Mendes, IST/UTL – p. 4/46

Some Biology

Co-regulated genes are expected to share motifs in their

regulatory regions

cis−regulatory region
︷ ︸︸ ︷

GATTGCATCATATATCCGATT

gene
︷ ︸︸ ︷

AGCCGATTA . . .

GACCGTACGCCATATGATTCAATTGCATTAC . . .

ACTCATATGCCTACTTAGCTAGCTAATTTGC . . .

Nuno D. Mendes, IST/UTL – p. 5/46

Some Biology

Co-regulated genes are expected to share motifs in their

regulatory regions

Sometimes with errors

cis−regulatory region
︷ ︸︸ ︷

GATTGCATCATAGATCCGATT

gene
︷ ︸︸ ︷

AGCCGATTA . . .

GACCGTACGCCATACGATTCAATTGCATTAC . . .

ACTCATAAGCCTACTTAGCTAGCTAATTTGC . . .

Nuno D. Mendes, IST/UTL – p. 5/46

Problem

Given a set of sequences S = {S1, . . . , St}

Nuno D. Mendes, IST/UTL – p. 6/46

Problem

Given a set of sequences S = {S1, . . . , St}

Find all motifs of length l ∈ (lmin, . . . , lmax) (l-mers) which occur

in q ≤ t sequences with at most e errors

Nuno D. Mendes, IST/UTL – p. 6/46

Problem

Given a set of sequences S = {S1, . . . , St}

Find all motifs of length l ∈ (lmin, . . . , lmax) (l-mers) which occur

in q ≤ t sequences with at most e errors

l = 5 e = 1 q = t = 3

S1 : GATTGCATCATAGATCCGATT

S2 : GACCGTACGCCATACGATTCA

S3 : ACTCATAAGCCTACTTAGCTA

should find CATAA CATAT CATAG CATAC

Nuno D. Mendes, IST/UTL – p. 6/46

Problem

Given a set of sequences S = {S1, . . . , St}

Find all motifs of length l ∈ (lmin, . . . , lmax) (l-mers) which occur

in q ≤ t sequences with at most e errors

l = 5 e = 1 q = t = 3

S1 : GATTGCATCATAGATCCGATT

S2 : GACCGTACGCCATACGATTCA

S3 : ACTCATAAGCCTACTTAGCTA

should find CATAA CATAT CATAG CATAC

Note that CATAT never occurs exactly

Nuno D. Mendes, IST/UTL – p. 6/46

Problem

So far we have thought of a motif as a contiguous string:

simple motif

Nuno D. Mendes, IST/UTL – p. 7/46

Problem

So far we have thought of a motif as a contiguous string:

simple motif

Sometimes it is useful to search for composite motifs

Nuno D. Mendes, IST/UTL – p. 7/46

Problem

So far we have thought of a motif as a contiguous string:

simple motif

Sometimes it is useful to search for composite motifs

combined simple motifs co-occurring in non-overlapping

positions in various input sequences at a certain distance

from one another

Nuno D. Mendes, IST/UTL – p. 7/46

Problem

So far we have thought of a motif as a contiguous string:

simple motif

Sometimes it is useful to search for composite motifs

combined simple motifs co-occurring in non-overlapping

positions in various input sequences at a certain distance

from one another

Easier to find, especially if one of the components is

poorly conserved across the input sequences

The added distance restriction avoids the extraction of

too many motifs

Nuno D. Mendes, IST/UTL – p. 7/46

Notation

All sequences are defined over Σ = {A, T, G, C}

Nuno D. Mendes, IST/UTL – p. 8/46

Notation

All sequences are defined over Σ = {A, T, G, C}

Sj [i] denotes the ith character on the jth sequence

Nuno D. Mendes, IST/UTL – p. 8/46

Notation

All sequences are defined over Σ = {A, T, G, C}

Sj [i] denotes the ith character on the jth sequence

mij ∈ Σl denotes the l-mer starting in position i of Sj

Nuno D. Mendes, IST/UTL – p. 8/46

Notation

All sequences are defined over Σ = {A, T, G, C}

Sj [i] denotes the ith character on the jth sequence

mij ∈ Σl denotes the l-mer starting in position i of Sj

nj denotes the length of sequence Sj

Nuno D. Mendes, IST/UTL – p. 8/46

Notation

All sequences are defined over Σ = {A, T, G, C}

Sj [i] denotes the ith character on the jth sequence

mij ∈ Σl denotes the l-mer starting in position i of Sj

nj denotes the length of sequence Sj

If m, m′ ∈ Σl then δ(m, m′) denotes the Hamming distance

between both

Nuno D. Mendes, IST/UTL – p. 8/46

Notation

All sequences are defined over Σ = {A, T, G, C}

Sj [i] denotes the ith character on the jth sequence

mij ∈ Σl denotes the l-mer starting in position i of Sj

nj denotes the length of sequence Sj

If m, m′ ∈ Σl then δ(m, m′) denotes the Hamming distance

between both

Finally,

N =
t∑

i=1

ni

Nuno D. Mendes, IST/UTL – p. 8/46

WINNOWER

Builds a graph G = (V, E)

Nuno D. Mendes, IST/UTL – p. 9/46

WINNOWER

Builds a graph G = (V, E)

Each l-mer in the input sequences is a vertex

V = {mij : 1 ≤ i ≤ nj − l + 1 ∧ 1 ≤ j ≤ t}

Nuno D. Mendes, IST/UTL – p. 9/46

WINNOWER

Builds a graph G = (V, E)

Each l-mer in the input sequences is a vertex

V = {mij : 1 ≤ i ≤ nj − l + 1 ∧ 1 ≤ j ≤ t}

There is an edge between a pair of vertices coming from different input sequences
provided that they do not mismatch in more than 2e positions

E = {(mij , mrs) : mij , mrs ∈ V ∧ δ(mij , mrs) ≤ 2e ∧ j 6= s}

Nuno D. Mendes, IST/UTL – p. 9/46

WINNOWER

Builds a graph G = (V, E)

Each l-mer in the input sequences is a vertex

V = {mij : 1 ≤ i ≤ nj − l + 1 ∧ 1 ≤ j ≤ t}

There is an edge between a pair of vertices coming from different input sequences
provided that they do not mismatch in more than 2e positions

E = {(mij , mrs) : mij , mrs ∈ V ∧ δ(mij , mrs) ≤ 2e ∧ j 6= s}

This way, a motif occurring on q different sequences with at most e errors corresponds to a
q-clique in G

Nuno D. Mendes, IST/UTL – p. 9/46

WINNOWER

Builds a graph G = (V, E)

Each l-mer in the input sequences is a vertex

V = {mij : 1 ≤ i ≤ nj − l + 1 ∧ 1 ≤ j ≤ t}

There is an edge between a pair of vertices coming from different input sequences
provided that they do not mismatch in more than 2e positions

E = {(mij , mrs) : mij , mrs ∈ V ∧ δ(mij , mrs) ≤ 2e ∧ j 6= s}

This way, a motif occurring on q different sequences with at most e errors corresponds to a
q-clique in G

For q > 2, the converse is not necessarily true

Nuno D. Mendes, IST/UTL – p. 9/46

WINNOWER

Builds a graph G = (V, E)

Each l-mer in the input sequences is a vertex

V = {mij : 1 ≤ i ≤ nj − l + 1 ∧ 1 ≤ j ≤ t}

There is an edge between a pair of vertices coming from different input sequences
provided that they do not mismatch in more than 2e positions

E = {(mij , mrs) : mij , mrs ∈ V ∧ δ(mij , mrs) ≤ 2e ∧ j 6= s}

This way, a motif occurring on q different sequences with at most e errors corresponds to a
q-clique in G

For q > 2, the converse is not necessarily true

Example:

ATAT GTGT TTTT

are at a distance no larger than 2 from one another, but there is no pattern at a
distance of 1 from all of them

Nuno D. Mendes, IST/UTL – p. 9/46

WINNOWER

Example of a 3-clique where all edges of G participate on the

clique

S1 : GATTGCAT CATAG ATCCGATT

S2 : GACCGTACGC CATAC GATTCA

S3 : ACT CATAA GCCTACTTAGCTA

Nuno D. Mendes, IST/UTL – p. 10/46

WINNOWER

Our problem is reduced to finding q-cliques in the t-partite

graph

Nuno D. Mendes, IST/UTL – p. 11/46

WINNOWER

Our problem is reduced to finding q-cliques in the t-partite

graph

Finding a maximal k-clique in a graph for k > 2 is NP-Complete

Nuno D. Mendes, IST/UTL – p. 11/46

WINNOWER

Our problem is reduced to finding q-cliques in the t-partite

graph

Finding a maximal k-clique in a graph for k > 2 is NP-Complete

WINNOWER adopts a winnowing strategy to try to remove all

edges which cannot be part of a q-clique in hope that after the

iterative process only q-cliques remain

Nuno D. Mendes, IST/UTL – p. 11/46

WINNOWER

A vertex u is a neighbour of a clique C = {v1, . . . , vk} if

{v1, . . . , vk, u} is also a clique in the graph

Nuno D. Mendes, IST/UTL – p. 12/46

WINNOWER

A vertex u is a neighbour of a clique C = {v1, . . . , vk} if

{v1, . . . , vk, u} is also a clique in the graph

A clique is extendable if it has at least one neighbour in each

partition of the graph

Nuno D. Mendes, IST/UTL – p. 12/46

WINNOWER

A vertex u is a neighbour of a clique C = {v1, . . . , vk} if

{v1, . . . , vk, u} is also a clique in the graph

A clique is extendable if it has at least one neighbour in each

partition of the graph

An edge is said to be spurious if it does not belong to any

extendable cliques of some size k

Nuno D. Mendes, IST/UTL – p. 12/46

WINNOWER

A vertex u is a neighbour of a clique C = {v1, . . . , vk} if

{v1, . . . , vk, u} is also a clique in the graph

A clique is extendable if it has at least one neighbour in each

partition of the graph

An edge is said to be spurious if it does not belong to any

extendable cliques of some size k

→ The algorithm will remove all spurious edges for increasing
values of k

Nuno D. Mendes, IST/UTL – p. 12/46

WINNOWER

For k = 1

A vertex u is a neighbour of vertex v if (u, v) ∈ E

We need to remove every vertex which does not have at

least q − 1 neighbours in different partitions

Nuno D. Mendes, IST/UTL – p. 13/46

WINNOWER

For k = 1

A vertex u is a neighbour of vertex v if (u, v) ∈ E

We need to remove every vertex which does not have at

least q − 1 neighbours in different partitions

For k = 2

A vertex u is a neighbour of an edge (v, w) if {v, w, u} is a

triangle in G

We need to remove every edge which does not have at

least q − 2 neighbours in different partitions

Nuno D. Mendes, IST/UTL – p. 13/46

WINNOWER

For k > 2

Observe that for any clique of size q there are
(
q
k

)

extendable cliques with k vertices

Nuno D. Mendes, IST/UTL – p. 14/46

WINNOWER

For k > 2

Observe that for any clique of size q there are
(
q
k

)

extendable cliques with k vertices

Thus, every edge on a q-clique belongs to at least
(
q−2
k−2

)

extendable clique of size k

Nuno D. Mendes, IST/UTL – p. 14/46

WINNOWER

For k > 2

Observe that for any clique of size q there are
(
q
k

)

extendable cliques with k vertices

Thus, every edge on a q-clique belongs to at least
(
q−2
k−2

)

extendable clique of size k

WINNOWER works up to k = 3, in which case, all edges not

belonging to at least q − 2 extendable cliques are deemed

inconsistent and removed

Nuno D. Mendes, IST/UTL – p. 14/46

WINNOWER

1

2

3

4

5

A maximal 5-clique. All edges must participate in 3 different

triangles.

Nuno D. Mendes, IST/UTL – p. 15/46

WINNOWER

Time complexity for k = 3 in O(t4N2.66)

Nuno D. Mendes, IST/UTL – p. 16/46

WINNOWER

Time complexity for k = 3 in O(t4N2.66)

It is not guaranteed to find a solution

Nuno D. Mendes, IST/UTL – p. 16/46

WINNOWER

Time complexity for k = 3 in O(t4N2.66)

It is not guaranteed to find a solution

To consider a range of lengths for motifs we have to re-run the

algorithm for each value of l

Nuno D. Mendes, IST/UTL – p. 16/46

WINNOWER

Time complexity for k = 3 in O(t4N2.66)

It is not guaranteed to find a solution

To consider a range of lengths for motifs we have to re-run the

algorithm for each value of l

It does not consider composite motifs directly

Nuno D. Mendes, IST/UTL – p. 16/46

WINNOWER

Time complexity for k = 3 in O(t4N2.66)

It is not guaranteed to find a solution

To consider a range of lengths for motifs we have to re-run the

algorithm for each value of l

It does not consider composite motifs directly

Assumes that a motif will not repeat in the same sequence

Nuno D. Mendes, IST/UTL – p. 16/46

PRUNER

Proposed to address some of the limitations of WINNOWER and

other algorithms

Nuno D. Mendes, IST/UTL – p. 17/46

PRUNER

Proposed to address some of the limitations of WINNOWER and

other algorithms

PRUNER claims to explore only a small portion of the e-mismatch

neighbourhood of an l-mer by taking into account pair-wise

similarities

Nuno D. Mendes, IST/UTL – p. 17/46

PRUNER

Proposed to address some of the limitations of WINNOWER and

other algorithms

PRUNER claims to explore only a small portion of the e-mismatch

neighbourhood of an l-mer by taking into account pair-wise

similarities

Builds a graph identical to the one built by WINNOWER

Nuno D. Mendes, IST/UTL – p. 17/46

PRUNER

Proposed to address some of the limitations of WINNOWER and

other algorithms

PRUNER claims to explore only a small portion of the e-mismatch

neighbourhood of an l-mer by taking into account pair-wise

similarities

Builds a graph identical to the one built by WINNOWER

Treats edges differently according to the degree of similarity

between its connecting vertices

Nuno D. Mendes, IST/UTL – p. 17/46

PRUNER

Proposed to address some of the limitations of WINNOWER and

other algorithms

PRUNER claims to explore only a small portion of the e-mismatch

neighbourhood of an l-mer by taking into account pair-wise

similarities

Builds a graph identical to the one built by WINNOWER

Treats edges differently according to the degree of similarity

between its connecting vertices

The price to pay is incompleteness

Nuno D. Mendes, IST/UTL – p. 17/46

PRUNER

Uses the notion of set of consistent patterns of two l-mers m1

and m2, denoted ρ(m1, m2)

ρ(m1, m2) = {m ∈ Σl : δ(m, m1) ≤ e ∧ δ(m, m2) ≤ e}

Nuno D. Mendes, IST/UTL – p. 18/46

PRUNER

Uses the notion of set of consistent patterns of two l-mers m1

and m2, denoted ρ(m1, m2)

ρ(m1, m2) = {m ∈ Σl : δ(m, m1) ≤ e ∧ δ(m, m2) ≤ e}

Note that, regardless of the value of e, if δ(m1, m2) > 2e then

ρ(m1, m2) = ∅

Nuno D. Mendes, IST/UTL – p. 18/46

PRUNER

Observe that

For each l-mer, one needs only to explore its set of consistent
patterns with respect to every other l-mer

Nuno D. Mendes, IST/UTL – p. 19/46

PRUNER

Observe that

For each l-mer, one needs only to explore its set of consistent
patterns with respect to every other l-mer

The number of l-mers which are at a distance no greater than d

reduces rapidly with decreasing values of d

Nuno D. Mendes, IST/UTL – p. 19/46

PRUNER

Observe that

For each l-mer, one needs only to explore its set of consistent
patterns with respect to every other l-mer

The number of l-mers which are at a distance no greater than d

reduces rapidly with decreasing values of d

The size of the set of consistent patterns for two l-mers which
mismatch in d positions decreases rapidly with increasing values of d

Nuno D. Mendes, IST/UTL – p. 19/46

PRUNER

Observe that

For each l-mer, one needs only to explore its set of consistent
patterns with respect to every other l-mer

The number of l-mers which are at a distance no greater than d

reduces rapidly with decreasing values of d

The size of the set of consistent patterns for two l-mers which
mismatch in d positions decreases rapidly with increasing values of d

In particular,

For any m1,m2 ∈ Σl such that e < δ(m1, m2) ≤ 2e we have
|ρ(m1, m2)| ∈ O(l

e

2 |Σ|
e

2) and its size is maximal for δ(m1, m2) = e + 1

Nuno D. Mendes, IST/UTL – p. 19/46

PRUNER

Observe that

For each l-mer, one needs only to explore its set of consistent
patterns with respect to every other l-mer

The number of l-mers which are at a distance no greater than d

reduces rapidly with decreasing values of d

The size of the set of consistent patterns for two l-mers which
mismatch in d positions decreases rapidly with increasing values of d

In particular,

For any m1,m2 ∈ Σl such that e < δ(m1, m2) ≤ 2e we have
|ρ(m1, m2)| ∈ O(l

e

2 |Σ|
e

2) and its size is maximal for δ(m1, m2) = e + 1

Whereas, if δ(m1, m2) ≤ e, then |ρ(m1, m2)| ∈ O(le|Σ|e)

Nuno D. Mendes, IST/UTL – p. 19/46

PRUNER

The edges of the graph are then divided into two disjoint sets

Nuno D. Mendes, IST/UTL – p. 20/46

PRUNER

The edges of the graph are then divided into two disjoint sets

Group 1

E1 = {(m1, m2) ∈ E : e < δ(m1, m2) ≤ 2e}

Nuno D. Mendes, IST/UTL – p. 20/46

PRUNER

The edges of the graph are then divided into two disjoint sets

Group 1

E1 = {(m1, m2) ∈ E : e < δ(m1, m2) ≤ 2e}

Group 2

E2 = {(m1, m2) ∈ E : δ(m1, m2) ≤ e}

Nuno D. Mendes, IST/UTL – p. 20/46

PRUNER

By only evaluating edges in E1, PRUNER avoids the larger size of

the set of consistent patterns of motifs connected by edges in

E2

Nuno D. Mendes, IST/UTL – p. 21/46

PRUNER

By only evaluating edges in E1, PRUNER avoids the larger size of

the set of consistent patterns of motifs connected by edges in

E2

In many cases the algorithm can report or discard a pattern

without looking into edges in E2

Nuno D. Mendes, IST/UTL – p. 21/46

PRUNER

Let γ : V 7→ N denote the partition degree of a vertex, i.e., the

number of different partitions it is connected to

Nuno D. Mendes, IST/UTL – p. 22/46

PRUNER

Let γ : V 7→ N denote the partition degree of a vertex, i.e., the

number of different partitions it is connected to

PRUNER starts by building a graph G identical to the one built by

WINNOWER

Nuno D. Mendes, IST/UTL – p. 22/46

PRUNER

Let γ : V 7→ N denote the partition degree of a vertex, i.e., the

number of different partitions it is connected to

PRUNER starts by building a graph G identical to the one built by

WINNOWER

It proceeds to delete all vertices m such that γ(m) < q − 1, just

like WINNOWER for k = 1

Nuno D. Mendes, IST/UTL – p. 22/46

PRUNER

For each mi ∈ V computes ρ(mi, mj) for every (mi, mj) ∈ E1

Nuno D. Mendes, IST/UTL – p. 23/46

PRUNER

For each mi ∈ V computes ρ(mi, mj) for every (mi, mj) ∈ E1

(mi, mj) is deleted and the computed patterns are added to a

list η(i)

Nuno D. Mendes, IST/UTL – p. 23/46

PRUNER

For each mi ∈ V computes ρ(mi, mj) for every (mi, mj) ∈ E1

(mi, mj) is deleted and the computed patterns are added to a

list η(i)

For each pattern we keep the information about the partition it

came from

Nuno D. Mendes, IST/UTL – p. 23/46

PRUNER

For each mi ∈ V computes ρ(mi, mj) for every (mi, mj) ∈ E1

(mi, mj) is deleted and the computed patterns are added to a

list η(i)

For each pattern we keep the information about the partition it

came from

After processing node mi, η(i) is sorted using radix sort

Nuno D. Mendes, IST/UTL – p. 23/46

PRUNER

For each mi ∈ V computes ρ(mi, mj) for every (mi, mj) ∈ E1

(mi, mj) is deleted and the computed patterns are added to a

list η(i)

For each pattern we keep the information about the partition it

came from

After processing node mi, η(i) is sorted using radix sort

η(i) is scanned and for each pattern p a partition count c(p) is

computed

Nuno D. Mendes, IST/UTL – p. 23/46

PRUNER

Let R = γ(mi) be the partition-degree of mi after processing and removing all incident
edges of E1 and let p be a pattern under consideration.

Nuno D. Mendes, IST/UTL – p. 24/46

PRUNER

Let R = γ(mi) be the partition-degree of mi after processing and removing all incident
edges of E1 and let p be a pattern under consideration.

If c(p) + R < q − 1 then p can be safely removed because the partition count can
increase by at most R if we compare p with each mj of the remaining edges
(mi, mj) ∈ E2

Nuno D. Mendes, IST/UTL – p. 24/46

PRUNER

Let R = γ(mi) be the partition-degree of mi after processing and removing all incident
edges of E1 and let p be a pattern under consideration.

If c(p) + R < q − 1 then p can be safely removed because the partition count can
increase by at most R if we compare p with each mj of the remaining edges
(mi, mj) ∈ E2

If c(p) ≥ q − 1 then p is reported since it is clear it already occurs in q − 1 other
partitions

Nuno D. Mendes, IST/UTL – p. 24/46

PRUNER

Let R = γ(mi) be the partition-degree of mi after processing and removing all incident
edges of E1 and let p be a pattern under consideration.

If c(p) + R < q − 1 then p can be safely removed because the partition count can
increase by at most R if we compare p with each mj of the remaining edges
(mi, mj) ∈ E2

If c(p) ≥ q − 1 then p is reported since it is clear it already occurs in q − 1 other
partitions

If q − 1 ≤ c(p) + R < q − 1 then we have to compare p with every other vertex which
is still connected to mi to check whether δ(p, mj) ≤ e

Nuno D. Mendes, IST/UTL – p. 24/46

PRUNER

Let R = γ(mi) be the partition-degree of mi after processing and removing all incident
edges of E1 and let p be a pattern under consideration.

If c(p) + R < q − 1 then p can be safely removed because the partition count can
increase by at most R if we compare p with each mj of the remaining edges
(mi, mj) ∈ E2

If c(p) ≥ q − 1 then p is reported since it is clear it already occurs in q − 1 other
partitions

If q − 1 ≤ c(p) + R < q − 1 then we have to compare p with every other vertex which
is still connected to mi to check whether δ(p, mj) ≤ e

After computing the new partition count

If it is still less than q − 1, p is discarded

Otherwise, p is reported

Nuno D. Mendes, IST/UTL – p. 24/46

PRUNER

After processing each vertex we are left with a graph containing

only edges in E2 which need to be processed. Then,

All vertices mi with γ(mi) < q − 1 are removed

Nuno D. Mendes, IST/UTL – p. 25/46

PRUNER

After processing each vertex we are left with a graph containing

only edges in E2 which need to be processed. Then,

All vertices mi with γ(mi) < q − 1 are removed

The remaining vertices, if any, are guaranteed to have a

partition degree larger than q

Nuno D. Mendes, IST/UTL – p. 25/46

PRUNER

After processing each vertex we are left with a graph containing

only edges in E2 which need to be processed. Then,

All vertices mi with γ(mi) < q − 1 are removed

The remaining vertices, if any, are guaranteed to have a

partition degree larger than q

The associated l-mers are, thus, valid patterns and are

reported

Nuno D. Mendes, IST/UTL – p. 25/46

PRUNER

After processing each vertex we are left with a graph containing

only edges in E2 which need to be processed. Then,

All vertices mi with γ(mi) < q − 1 are removed

The remaining vertices, if any, are guaranteed to have a

partition degree larger than q

The associated l-mers are, thus, valid patterns and are

reported

However, consistent patterns for each pair of vertices are not

computed at this stage of the algorithm which may cause some

valid patterns not to be reported

Nuno D. Mendes, IST/UTL – p. 25/46

PRUNER

Consider the following graph, where each vertex corresponds to a different partition
Edges in E1 are in yellow and edges in E2 are in green

AAGC

CAGT

d=2

ACGT

d=2

d=2

AAGT

d=1

d=1

d=1

q = 4

e = 1

For every edge mi ∈ E

γ(mi) ≥ q − 1 = 3

No vertex is removed at this stage

Nuno D. Mendes, IST/UTL – p. 26/46

PRUNER

AAGC

CAGT

d=2

ACGT

d=2

d=2

AAGT

d=1

d=1

d=1

q = 4

e = 1

Consider vertex AAGC

Nuno D. Mendes, IST/UTL – p. 26/46

PRUNER

AAGC

CAGT

d=2

ACGT

d=2

d=2

AAGT

d=1

d=1

d=1

q = 4

e = 1

ρ(AAGC, CAGT) = {CAGC, AAGT}

η(AAGC) = {CAGC, AAGT}

Nuno D. Mendes, IST/UTL – p. 26/46

PRUNER

AAGC

CAGT

ACGT

d=2

d=2

AAGT

d=1

d=1

d=1

q = 4

e = 1

ρ(AAGC, ACGT) = {AAGT, ACGC}

η(AAGC) = {CAGC, AAGT, AAGT, ACGC}

Nuno D. Mendes, IST/UTL – p. 26/46

PRUNER

AAGC CAGT

ACGT

d=2

AAGT

d=1 d=1

d=1

q = 4

e = 1

Finished processing vertex AAGC

Sorting and scanning η(AAGC)

η(AAGC) = {CAGC, AAGT, AAGT, ACGC}

Nuno D. Mendes, IST/UTL – p. 26/46

PRUNER

AAGC CAGT

ACGT

d=2

AAGT

d=1 d=1

d=1

q = 4

e = 1

Finished processing vertex AAGC

Sorting and scanning η(AAGC)

η(AAGC) = {ACGC, AAGT, AAGT, CAGC}

Nuno D. Mendes, IST/UTL – p. 26/46

PRUNER

AAGC CAGT

ACGT

d=2

AAGT

d=1 d=1

d=1

q = 4

e = 1

Finished processing vertex AAGC

Sorting and scanning η(AAGC)

η(AAGC) = {ACGC
]1

, AAGT, AAGT
]2

, CAGC
]1
}

Nuno D. Mendes, IST/UTL – p. 26/46

PRUNER

AAGC CAGT

ACGT

d=2

AAGT

d=1 d=1

d=1

q = 4

e = 1

R = γ(AAGC) = 1

η(AAGC) = {ACGC
]1

, AAGT, AAGT
]2

, CAGC
]1
}

c(ACGC) + R < q − 1 ⇔ 1 + 1 < 3 DISCARD

c(CAGC) + R < q − 1 ⇔ 1 + 1 < 3 DISCARD

q − 1 ≤ c(AAGT) + R < q − 1 + R ⇔

⇔ 3 ≤ 3 < 4 CHECK E2 edges

Nuno D. Mendes, IST/UTL – p. 26/46

PRUNER

AAGC CAGT

ACGT

d=2

AAGT

d=1 d=1

d=1

q = 4

e = 1

δ(AAGT, AAGT) = 0 < e

The new partition count is increased

c(AAGT) = 3 ≥ q − 1 REPORT

PRUNER would now process the remaining vertices . . .

Nuno D. Mendes, IST/UTL – p. 26/46

PRUNER

PRUNER takes O(N2t2l
e
2) time and O(Ntl

e
2 |Σ|

e
2) space to

operate

Nuno D. Mendes, IST/UTL – p. 27/46

PRUNER

PRUNER takes O(N2t2l
e
2) time and O(Ntl

e
2 |Σ|

e
2) space to

operate

To consider a range of lengths for motifs we have to re-run the

algorithm for each value of l

Nuno D. Mendes, IST/UTL – p. 27/46

PRUNER

PRUNER takes O(N2t2l
e
2) time and O(Ntl

e
2 |Σ|

e
2) space to

operate

To consider a range of lengths for motifs we have to re-run the

algorithm for each value of l

It does not consider composite motifs directly

Nuno D. Mendes, IST/UTL – p. 27/46

PRUNER

PRUNER takes O(N2t2l
e
2) time and O(Ntl

e
2 |Σ|

e
2) space to

operate

To consider a range of lengths for motifs we have to re-run the

algorithm for each value of l

It does not consider composite motifs directly

Assumes that a motif will not repeat in the same sequence

Nuno D. Mendes, IST/UTL – p. 27/46

PRUNER

PRUNER takes O(N2t2l
e
2) time and O(Ntl

e
2 |Σ|

e
2) space to

operate

To consider a range of lengths for motifs we have to re-run the

algorithm for each value of l

It does not consider composite motifs directly

Assumes that a motif will not repeat in the same sequence

It is incomplete

Nuno D. Mendes, IST/UTL – p. 27/46

SMILE

SMILE is a combinatorial algorithm which relies on a generalized

suffix-tree

Nuno D. Mendes, IST/UTL – p. 28/46

SMILE

SMILE is a combinatorial algorithm which relies on a generalized

suffix-tree

A generalized suffix-tree T is a representation of all the suffixes

of a set of sequences S

Nuno D. Mendes, IST/UTL – p. 28/46

SMILE

SMILE is a combinatorial algorithm which relies on a generalized

suffix-tree

A generalized suffix-tree T is a representation of all the suffixes

of a set of sequences S

T has multiple termination symbols (one for each sequence)

Nuno D. Mendes, IST/UTL – p. 28/46

SMILE

SMILE is a combinatorial algorithm which relies on a generalized

suffix-tree

A generalized suffix-tree T is a representation of all the suffixes

of a set of sequences S

T has multiple termination symbols (one for each sequence)

At each internal node v we keep a bit vector of size t (colorsv)

indicating the sequences in S in which the path-label of v

occurs

Nuno D. Mendes, IST/UTL – p. 28/46

SMILE

SMILE is a combinatorial algorithm which relies on a generalized

suffix-tree

A generalized suffix-tree T is a representation of all the suffixes

of a set of sequences S

T has multiple termination symbols (one for each sequence)

At each internal node v we keep a bit vector of size t (colorsv)

indicating the sequences in S in which the path-label of v

occurs

To facilitate the discussion we will think of T as if it were a trie

Nuno D. Mendes, IST/UTL – p. 28/46

SMILE

The algorithm operates by traversing T

Nuno D. Mendes, IST/UTL – p. 29/46

SMILE

The algorithm operates by traversing T

The traversal is guided by a virtual lexicographic trie M which

represents all motifs m ∈ Σl

Nuno D. Mendes, IST/UTL – p. 29/46

SMILE

The algorithm operates by traversing T

The traversal is guided by a virtual lexicographic trie M which

represents all motifs m ∈ Σl

As we go down on M we follow all valid paths in T , i.e. all

paths for which there is still hope of finding a path-label of

length l with at most e mismatches from the motif being spelt

by the traversal of M

Nuno D. Mendes, IST/UTL – p. 29/46

SMILE

The algorithm operates by traversing T

The traversal is guided by a virtual lexicographic trie M which

represents all motifs m ∈ Σl

As we go down on M we follow all valid paths in T , i.e. all

paths for which there is still hope of finding a path-label of

length l with at most e mismatches from the motif being spelt

by the traversal of M

The traversal stops if there are no more valid paths or if the

paths do not represent occurrences in at least q ≤ t

sequences, in which case, the sub-trie below the current node

in M is pruned

Nuno D. Mendes, IST/UTL – p. 29/46

SMILE

If we are able to reach a node v in M at depth l and still have

valid paths in T we report the path-label of v as a valid pattern

Nuno D. Mendes, IST/UTL – p. 30/46

SMILE

If we are able to reach a node v in M at depth l and still have

valid paths in T we report the path-label of v as a valid pattern

Note that the algorithm can easily not only extract motifs of

length l but also motifs within any range of lengths lmin, . . . , lmax

Continue the traversal of M as far as depth lmax

Report any pattern with at least lmin characters that

respects the extraction requirements

Nuno D. Mendes, IST/UTL – p. 30/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

A A A A

AA C

C C C C C C

G

G G G GT T T T

T T

A

C

[1,1]

[0,1] [1,0][1,0]

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A A A A

AA C

C C C C C C

G

G G G GT T T T

T T

A

C

[1,0] [0,1] [1,0]

(A,0); (C,1); (T,1)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A A A A

AA C

C C C C C C

G

G G G GT T T T

T T

A

C

[1,0] [0,1] [1,0]

(A,0); (C,1); (T,1)

(AC,1); (TA,1)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A A A

AA C

C C C C C C

G

G G G GT T T T

T T

A

C

[1,0] [0,1] [1,0]

(A,0); (C,1); (T,1)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A A A

AA C

C C C C C C

G

G G G GT T T T

T T

A

C

[1,0] [0,1] [1,0]

(A,0); (C,1); (T,1)

(AC,0); (CC,1)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A A A

AA C

C C C C C

G

G G G GT T T T

T T

A

C

[1,0] [0,1] [1,0]

(A,0); (C,1); (T,1)

C

(AC,0)

(CC,1)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A A A

AA C

C C C C C

G

G G G GT T T T

T T

A

C

[1,0] [0,1] [1,0]

(A,0); (C,1); (T,1)

C

(AC,1)

(AC,0)

(CC,1)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A A A

AA C

C C C C C

G

G G GT T T T

T T

A

C

[1,0] [0,1] [1,0]

(A,0); (C,1); (T,1)

C

(AC,0)

(CC,1)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A A A

AA C

C C C C C

G

G G GT T T T

T T

A

C

[1,0] [0,1] [1,0]

(A,0); (C,1); (T,1)

C

(AC,1)

(AC,0)

(CC,1)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A A A

AA C

C C C C C

G

G G GT T T

T T

A

C

[1,0] [0,1] [1,0]

(A,0); (C,1); (T,1)

C

(AC,0)

(CC,1)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A A A

AA C

C C C C C

G

G G GT T T

T T

A

C

[1,0] [0,1] [1,0]

C

(AC,0)

(CC,1)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A A A

AA C

C C C C C

G

G G GT T T

T T

A

C

[1,0] [0,1] [1,0]

C

(A,1); (C,0); (T,1)

(AC,0)

(CC,1)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A A A

AA C

C C C C C

G

G G GT T T

T T

A

C

[1,0] [0,1] [1,0]

C

(A,1); (C,0); (T,1)

(CC,1); (TA,1)

(AC,0)

(CC,1)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A A A

AA C

C C C C C

G

G G GT T T

T T

A

C

[1,0] [0,1] [1,0]

C

(A,1); (C,0); (T,1)

(AC,0)

(CC,1)

(CC,1)

(TA,1)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A A A

AA C

C C C C C

G

G G GT T T

T T

A

C

[1,0] [0,1] [1,0]

C

(A,1); (C,0); (T,1)

(AC,1); (CC,0)

(AC,0)

(CC,1)

(CC,1)

(TA,1)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A A A

AA C

C C C C C

G

G G GT T T

T T

A

C

[1,0] [0,1] [1,0]

C

(A,1); (C,0); (T,1)

(AC,0)

(CC,1)

(CC,1)

(TA,1)

(AC,1)

(CC,0)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A A A

AA C

C C C C C

G

G G GT T T

T T

A

C

[1,0] [0,1] [1,0]

C

(A,1); (C,0); (T,1)

(CG,1)

(AC,0)

(CC,1)

(CC,1)

(TA,1)

(AC,1)

(CC,0)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A A A

AA C

C C C C C

G

G GT T T

T T

A

C

[1,0] [0,1] [1,0]

C

(A,1); (C,0); (T,1)

(AC,0)

(CC,1)

(CC,1)

(TA,1)

(AC,1)

(CC,0)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A A A

AA C

C C C C C

G

G GT T T

T T

A

C

[1,0] [0,1] [1,0]

C

(A,1); (C,0); (T,1)

(CT,1)

(AC,0)

(CC,1)

(CC,1)

(TA,1)

(AC,1)

(CC,0)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A A A

AA C

C C C C C

G

G GT T

T T

A

C

[1,0] [0,1] [1,0]

C

(A,1); (C,0); (T,1)

(AC,0)

(CC,1)

(CC,1)

(TA,1)

(AC,1)

(CC,0)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A A A

AA C

C C C C C

G

G GT T

T T

A

C

[1,0] [0,1] [1,0]

C

(AC,0)

(CC,1)

(CC,1)

(TA,1)

(AC,1)

(CC,0)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Extraction of Simple Motifs

l = 2 Input sequences: TAC and CCC
e = 1

q = t = 2

[1,1]

A

AA C

C C C C C

G T T

A

C

[1,0] [0,1] [1,0]

C

(AC,0)

(CC,1)

(CC,1)

(TA,1)

(AC,1)

(CC,0)

(AC,1)

(CC,1)

(AC,1)

(CC,1)

Nuno D. Mendes, IST/UTL – p. 31/46

SMILE

Unlike the previous algorithms SMILE handles composite motifs

directly

Nuno D. Mendes, IST/UTL – p. 32/46

SMILE

Unlike the previous algorithms SMILE handles composite motifs

directly

Instead of pre-processing the input sequences it will simply

jump down in the suffix-tree to search for the next component

Nuno D. Mendes, IST/UTL – p. 32/46

SMILE

Unlike the previous algorithms SMILE handles composite motifs

directly

Instead of pre-processing the input sequences it will simply

jump down in the suffix-tree to search for the next component

We can consider any number of components

Nuno D. Mendes, IST/UTL – p. 32/46

SMILE

Unlike the previous algorithms SMILE handles composite motifs

directly

Instead of pre-processing the input sequences it will simply

jump down in the suffix-tree to search for the next component

We can consider any number of components

The component motifs can be separated by

d ∈ {dmin, . . . , dmax} characters

Nuno D. Mendes, IST/UTL – p. 32/46

SMILE

Unlike the previous algorithms SMILE handles composite motifs

directly

Instead of pre-processing the input sequences it will simply

jump down in the suffix-tree to search for the next component

We can consider any number of components

The component motifs can be separated by

d ∈ {dmin, . . . , dmax} characters

We can establish a global maximum number of allowed

mismatches alongside the permitted errors for each component

Nuno D. Mendes, IST/UTL – p. 32/46

SMILE

Extraction of composite motifs

p = 2 Input sequences: ACTGAA and CACGTA
l1 = 2, d = 1, l2 = 2

e1 = 1, e2 = 1

q = t = 2

[1,1]

[1,1]

[0,1] [0,1] [1,0]

A

A

A

[1,0]

C

C

T

T

T

G G

A

A

A

[1,1]

G T C G
A A A A

A C

C C C C

G

G G G GT T T T

T

A A A A

A C

C C C C

G

G G G GT T T T

T

Nuno D. Mendes, IST/UTL – p. 33/46

SMILE

Extraction of composite motifs

p = 2 Input sequences: ACTGAA and CACGTA
l1 = 2, d = 1, l2 = 2

e1 = 1, e2 = 1

q = t = 2

[1,1]

[1,1]

[0,1] [0,1] [1,0]

A

A

A

[1,0]

C

C

T

T

T

G G

A

A

A

[1,1]

G T C G
A A

A C

C C C C

G

G GT T

T

A A

A C

C C C C

G

G GT T

T

A AG GT T

Nuno D. Mendes, IST/UTL – p. 33/46

SMILE

Extraction of composite motifs

p = 2 Input sequences: ACTGAA and CACGTA
l1 = 2, d = 1, l2 = 2

e1 = 1, e2 = 1

q = t = 2

[1,1]

[1,1]

[0,1] [0,1] [1,0]

A

A

A

[1,0]

C

C

T

T

T

G G

A

A

A

[1,1]

G T C G

(AC,1)

(CA,1)

A A

A C

C C C C

G

G GT T

T

A A

A C

C C C C

G

G GT T

T

A AG GT T

Nuno D. Mendes, IST/UTL – p. 33/46

SMILE

Extraction of composite motifs

p = 2 Input sequences: ACTGAA and CACGTA
l1 = 2, d = 1, l2 = 2

e1 = 1, e2 = 1

q = t = 2

[1,1]

[1,1]

[0,1] [0,1] [1,0]

A

A

A

[1,0]

C

C

T

T

T

G G

A

A

A

[1,1]

G T C G

(AC,1)

(CA,1)

A A

A C

C C C C

G

G GT T

T

A

A G T

A A

C

A C G T

Nuno D. Mendes, IST/UTL – p. 33/46

SMILE

Extraction of composite motifs

p = 2 Input sequences: ACTGAA and CACGTA
l1 = 2, d = 1, l2 = 2

e1 = 1, e2 = 1

q = t = 2

[1,1]

[1,1]

[0,1] [0,1] [1,0]

A

A

A

[1,0]

C

C

T

T

T

G G

A

A

A

[1,1]

G T C G
A A

A C

C C C C

G

G GT T

T

A

A G T

A A

(AC,1)

C

C

C CG G GT T T TGCA

Nuno D. Mendes, IST/UTL – p. 33/46

SMILE

Extraction of composite motifs

p = 2 Input sequences: ACTGAA and CACGTA
l1 = 2, d = 1, l2 = 2

e1 = 1, e2 = 1

q = t = 2

[1,1]

[1,1]

[0,1] [0,1] [1,0]

A

A

A

[1,0]

C

C

T

T

T

G G

A

A

A

[1,1]

G T C G
A A

A C

C C C C

G

G GT T

T

A

A G T

A A

(AC,1)

C

A

Nuno D. Mendes, IST/UTL – p. 33/46

SMILE

The extraction of simple motifs takes O(t2NV(e, l)) time and O(t2N)

space, where

V(e, l) =

e∑

i=0

(
l

i

)

(|Σ| − 1)i ≤ le|Σ|e

Nuno D. Mendes, IST/UTL – p. 34/46

SMILE

The extraction of simple motifs takes O(t2NV(e, l)) time and O(t2N)

space, where

V(e, l) =

e∑

i=0

(
l

i

)

(|Σ| − 1)i ≤ le|Σ|e

The simplest version for the extraction of composite motifs takes
O(p∆2λ(p−1)l+(p−1)dmax

V(e, l)p−1 + tp∆λpl+(p−1)dmax
V(e, l)p) time

and O(t2N) space where, λd denotes the number of nodes in T at
depth d and ∆ = dmax − dmin

Nuno D. Mendes, IST/UTL – p. 34/46

SMILE

The extraction of simple motifs takes O(t2NV(e, l)) time and O(t2N)

space, where

V(e, l) =

e∑

i=0

(
l

i

)

(|Σ| − 1)i ≤ le|Σ|e

The simplest version for the extraction of composite motifs takes
O(p∆2λ(p−1)l+(p−1)dmax

V(e, l)p−1 + tp∆λpl+(p−1)dmax
V(e, l)p) time

and O(t2N) space where, λd denotes the number of nodes in T at
depth d and ∆ = dmax − dmin

Recent versions yield even better time and space bounds

Nuno D. Mendes, IST/UTL – p. 34/46

SMILE

The extraction of simple motifs takes O(t2NV(e, l)) time and O(t2N)

space, where

V(e, l) =

e∑

i=0

(
l

i

)

(|Σ| − 1)i ≤ le|Σ|e

The simplest version for the extraction of composite motifs takes
O(p∆2λ(p−1)l+(p−1)dmax

V(e, l)p−1 + tp∆λpl+(p−1)dmax
V(e, l)p) time

and O(t2N) space where, λd denotes the number of nodes in T at
depth d and ∆ = dmax − dmin

Recent versions yield even better time and space bounds

Guarantees both convergence and completeness

Nuno D. Mendes, IST/UTL – p. 34/46

SMILE

The extraction of simple motifs takes O(t2NV(e, l)) time and O(t2N)

space, where

V(e, l) =

e∑

i=0

(
l

i

)

(|Σ| − 1)i ≤ le|Σ|e

The simplest version for the extraction of composite motifs takes
O(p∆2λ(p−1)l+(p−1)dmax

V(e, l)p−1 + tp∆λpl+(p−1)dmax
V(e, l)p) time

and O(t2N) space where, λd denotes the number of nodes in T at
depth d and ∆ = dmax − dmin

Recent versions yield even better time and space bounds

Guarantees both convergence and completeness

Addresses several extensions to the original problem

Nuno D. Mendes, IST/UTL – p. 34/46

MITRA

MITRA is a hybrid algorithm

Nuno D. Mendes, IST/UTL – p. 35/46

MITRA

MITRA is a hybrid algorithm

Combines the tree-like view of SMILE with information about

pairwise similarities from the graph built by WINNOWER

Nuno D. Mendes, IST/UTL – p. 35/46

MITRA

MITRA is a hybrid algorithm

Combines the tree-like view of SMILE with information about

pairwise similarities from the graph built by WINNOWER

Relies on a mismatch tree data structure M

Similar to a trie

Splits the space of all possible motifs into disjoint spaces

Each subspace represents motifs with the same prefix

Nuno D. Mendes, IST/UTL – p. 35/46

MITRA

A mismatch tree M is a rooted tree where each internal node v

has |Σ| branches, each labelled with a different symbol of the

alphabet

Nuno D. Mendes, IST/UTL – p. 36/46

MITRA

A mismatch tree M is a rooted tree where each internal node v

has |Σ| branches, each labelled with a different symbol of the

alphabet

The maximum depth of M is l

Nuno D. Mendes, IST/UTL – p. 36/46

MITRA

A mismatch tree M is a rooted tree where each internal node v

has |Σ| branches, each labelled with a different symbol of the

alphabet

The maximum depth of M is l

Each node v corresponds to the subspace of motifs P with a

fixed prefix defined by the path-label of v and contains a

reference to all l-mers in S which are within e mismatches of a

pattern p ∈ P

Nuno D. Mendes, IST/UTL – p. 36/46

MITRA

Initially, M contains only the root node representing the space of all
motifs

Nuno D. Mendes, IST/UTL – p. 37/46

MITRA

Initially, M contains only the root node representing the space of all
motifs

The nodes of M are expanded in a depth-first manner

Nuno D. Mendes, IST/UTL – p. 37/46

MITRA

Initially, M contains only the root node representing the space of all
motifs

The nodes of M are expanded in a depth-first manner

While examining a node v, MITRA tries to assert whether the
corresponding sub-space contains a pattern p for which there are
q ≤ t occurrences in different input sequences with at most e

mismatches

Nuno D. Mendes, IST/UTL – p. 37/46

MITRA

Initially, M contains only the root node representing the space of all
motifs

The nodes of M are expanded in a depth-first manner

While examining a node v, MITRA tries to assert whether the
corresponding sub-space contains a pattern p for which there are
q ≤ t occurrences in different input sequences with at most e

mismatches

If a subspace does not contains a pattern in these conditions it is
deemed weak and the mismatch tree is pruned

Nuno D. Mendes, IST/UTL – p. 37/46

MITRA

Initially, M contains only the root node representing the space of all
motifs

The nodes of M are expanded in a depth-first manner

While examining a node v, MITRA tries to assert whether the
corresponding sub-space contains a pattern p for which there are
q ≤ t occurrences in different input sequences with at most e

mismatches

If a subspace does not contains a pattern in these conditions it is
deemed weak and the mismatch tree is pruned

Whenever the algorithm cannot determine whether the current node
refers to a weak subspace, the node is expanded and we move down
one level

Nuno D. Mendes, IST/UTL – p. 37/46

MITRA

Initially, M contains only the root node representing the space of all
motifs

The nodes of M are expanded in a depth-first manner

While examining a node v, MITRA tries to assert whether the
corresponding sub-space contains a pattern p for which there are
q ≤ t occurrences in different input sequences with at most e

mismatches

If a subspace does not contains a pattern in these conditions it is
deemed weak and the mismatch tree is pruned

Whenever the algorithm cannot determine whether the current node
refers to a weak subspace, the node is expanded and we move down
one level

If we reach a node v at level l the path-label of v is reported as a valid
pattern

Nuno D. Mendes, IST/UTL – p. 37/46

MITRA

Recall that MITRA keeps track of all valid l-mers for each node v

of M

Nuno D. Mendes, IST/UTL – p. 38/46

MITRA

Recall that MITRA keeps track of all valid l-mers for each node v

of M

An l-mer referred from v is valid if it matches the prefix of the

path-label of v with at most e mismatches

Nuno D. Mendes, IST/UTL – p. 38/46

MITRA

Recall that MITRA keeps track of all valid l-mers for each node v

of M

An l-mer referred from v is valid if it matches the prefix of the

path-label of v with at most e mismatches

The set of valid l-mers of a node v is a subset of the valid

l-mers referred from the parent of v

Nuno D. Mendes, IST/UTL – p. 38/46

MITRA

Recall that MITRA keeps track of all valid l-mers for each node v

of M

An l-mer referred from v is valid if it matches the prefix of the

path-label of v with at most e mismatches

The set of valid l-mers of a node v is a subset of the valid

l-mers referred from the parent of v

We can, then, efficiently generate the set of valid l-mers of a

node at the expense of the computed information about its

parent

Nuno D. Mendes, IST/UTL – p. 38/46

MITRA

When expanding the parent of a node v, each of its valid l-mers can
fit into two situations

Either the position corresponding to the label of the branch to v

matches the l-mer

or not

Nuno D. Mendes, IST/UTL – p. 39/46

MITRA

When expanding the parent of a node v, each of its valid l-mers can
fit into two situations

Either the position corresponding to the label of the branch to v

matches the l-mer

or not

If we have a match, the l-mer is still valid for the child

Nuno D. Mendes, IST/UTL – p. 39/46

MITRA

When expanding the parent of a node v, each of its valid l-mers can
fit into two situations

Either the position corresponding to the label of the branch to v

matches the l-mer

or not

If we have a match, the l-mer is still valid for the child

Otherwise the mismatch count increases and

If the threshold e is surpassed the l-mer in not included in the list
of v

If not, the l-mer remains valid, albeit with a greater mismatch
count

Nuno D. Mendes, IST/UTL – p. 39/46

MITRA

We are left with the problem of deciding whether a subspace

associated with a node v is weak

Nuno D. Mendes, IST/UTL – p. 40/46

MITRA

We are left with the problem of deciding whether a subspace

associated with a node v is weak

The authors present two alternatives

Counting the number of different sequences contributing to

the list of valid l-mers referred by v (MITRA-COUNT), which is

tantamount to the operation of SMILE when extracting simple

motifs

Building a graph for the node v (MITRA-GRAPH)

Nuno D. Mendes, IST/UTL – p. 40/46

MITRA-GRAPH

Consider a pattern p and a set of sequences S

Nuno D. Mendes, IST/UTL – p. 41/46

MITRA-GRAPH

Consider a pattern p and a set of sequences S

We construct a graph G(p,S) where each l-mer occurring in S is a
vertex and there is an edge connecting two l-mers if p is within e

mismatches of both and they occur in different input sequences

Nuno D. Mendes, IST/UTL – p. 41/46

MITRA-GRAPH

Consider a pattern p and a set of sequences S

We construct a graph G(p,S) where each l-mer occurring in S is a
vertex and there is an edge connecting two l-mers if p is within e

mismatches of both and they occur in different input sequences

If p is under the conditions of our problem, we shall have a q-clique in
G

Nuno D. Mendes, IST/UTL – p. 41/46

MITRA-GRAPH

Consider a pattern p and a set of sequences S

We construct a graph G(p,S) where each l-mer occurring in S is a
vertex and there is an edge connecting two l-mers if p is within e

mismatches of both and they occur in different input sequences

If p is under the conditions of our problem, we shall have a q-clique in
G

Now, consider a set of patterns P

Nuno D. Mendes, IST/UTL – p. 41/46

MITRA-GRAPH

Consider a pattern p and a set of sequences S

We construct a graph G(p,S) where each l-mer occurring in S is a
vertex and there is an edge connecting two l-mers if p is within e

mismatches of both and they occur in different input sequences

If p is under the conditions of our problem, we shall have a q-clique in
G

Now, consider a set of patterns P

We define G(P,S) as the graph whose set of edges is the union of
the edges of each G(p,S), p ∈ P

Nuno D. Mendes, IST/UTL – p. 41/46

MITRA-GRAPH

Consider a pattern p and a set of sequences S

We construct a graph G(p,S) where each l-mer occurring in S is a
vertex and there is an edge connecting two l-mers if p is within e

mismatches of both and they occur in different input sequences

If p is under the conditions of our problem, we shall have a q-clique in
G

Now, consider a set of patterns P

We define G(P,S) as the graph whose set of edges is the union of
the edges of each G(p,S), p ∈ P

If we can guarantee that there are no q-cliques in G(P,S) we can
confidently say that P is weak

Nuno D. Mendes, IST/UTL – p. 41/46

MITRA-GRAPH

MITRA-GRAPH is concerned with proving that there are no

q-cliques, whereas WINNOWER was trying to find some

Nuno D. Mendes, IST/UTL – p. 42/46

MITRA-GRAPH

MITRA-GRAPH is concerned with proving that there are no

q-cliques, whereas WINNOWER was trying to find some

Like WINNOWER, MITRA-GRAPH adopts a winnowing strategy, but

only to remove vertices (and respective incident edges) with a

partition degree less than q − 1

Nuno D. Mendes, IST/UTL – p. 42/46

MITRA-GRAPH

MITRA-GRAPH is concerned with proving that there are no

q-cliques, whereas WINNOWER was trying to find some

Like WINNOWER, MITRA-GRAPH adopts a winnowing strategy, but

only to remove vertices (and respective incident edges) with a

partition degree less than q − 1

If the remaining edges are insufficient to form a q-clique we can

rule out its existence, otherwise the subspace will be further

divided

Nuno D. Mendes, IST/UTL – p. 42/46

MITRA-GRAPH

If MITRA-GRAPH had to build G(P,S) for each visited node it would be
very innefficient

Nuno D. Mendes, IST/UTL – p. 43/46

MITRA-GRAPH

If MITRA-GRAPH had to build G(P,S) for each visited node it would be
very innefficient

Instead the graph for a node v is built at the expense of the graph of
its parent u

Nuno D. Mendes, IST/UTL – p. 43/46

MITRA-GRAPH

If MITRA-GRAPH had to build G(P,S) for each visited node it would be
very innefficient

Instead the graph for a node v is built at the expense of the graph of
its parent u

Let (m1, m2) be an edge of the graph of u, p be the path-label of v

and d be the length of p

Nuno D. Mendes, IST/UTL – p. 43/46

MITRA-GRAPH

If MITRA-GRAPH had to build G(P,S) for each visited node it would be
very innefficient

Instead the graph for a node v is built at the expense of the graph of
its parent u

Let (m1, m2) be an edge of the graph of u, p be the path-label of v

and d be the length of p

If δ(m1, p) = e1, δ(m2, p) = e2 and if the last l − d characters of m1

and m2 mismatch in at most ε positions, then

Nuno D. Mendes, IST/UTL – p. 43/46

MITRA-GRAPH

If MITRA-GRAPH had to build G(P,S) for each visited node it would be
very innefficient

Instead the graph for a node v is built at the expense of the graph of
its parent u

Let (m1, m2) be an edge of the graph of u, p be the path-label of v

and d be the length of p

If δ(m1, p) = e1, δ(m2, p) = e2 and if the last l − d characters of m1

and m2 mismatch in at most ε positions, then

(m1, m2) is an edge of the graph of v iff e1 ≤ e, e2 ≤ e and
e1 + e2 + ε ≤ 2e

Nuno D. Mendes, IST/UTL – p. 43/46

MITRA-GRAPH

If MITRA-GRAPH had to build G(P,S) for each visited node it would be
very innefficient

Instead the graph for a node v is built at the expense of the graph of
its parent u

Let (m1, m2) be an edge of the graph of u, p be the path-label of v

and d be the length of p

If δ(m1, p) = e1, δ(m2, p) = e2 and if the last l − d characters of m1

and m2 mismatch in at most ε positions, then

(m1, m2) is an edge of the graph of v iff e1 ≤ e, e2 ≤ e and
e1 + e2 + ε ≤ 2e

Note that for the root node, where e1 = e2 = l − d = 0, the condition
is ε = δ(m1, m2) ≤ 2e which is precisely the graph built by WINNOWER

Nuno D. Mendes, IST/UTL – p. 43/46

Conclusions

We presented some of the most popular combinatorial

algorithms to solve the problem of finding common motifs in

DNA sequences

Nuno D. Mendes, IST/UTL – p. 44/46

Conclusions

We presented some of the most popular combinatorial

algorithms to solve the problem of finding common motifs in

DNA sequences

SMILE and MITRA-GRAPH are the most interesting

Nuno D. Mendes, IST/UTL – p. 44/46

Conclusions

We presented some of the most popular combinatorial

algorithms to solve the problem of finding common motifs in

DNA sequences

SMILE and MITRA-GRAPH are the most interesting

WINNOWER is not guaranteed to find a solution

Nuno D. Mendes, IST/UTL – p. 44/46

Conclusions

We presented some of the most popular combinatorial

algorithms to solve the problem of finding common motifs in

DNA sequences

SMILE and MITRA-GRAPH are the most interesting

WINNOWER is not guaranteed to find a solution

PRUNER is incomplete

Nuno D. Mendes, IST/UTL – p. 44/46

Conclusions

We presented some of the most popular combinatorial

algorithms to solve the problem of finding common motifs in

DNA sequences

SMILE and MITRA-GRAPH are the most interesting

WINNOWER is not guaranteed to find a solution

PRUNER is incomplete

SMILE is unique in its approach to composite motifs

Nuno D. Mendes, IST/UTL – p. 44/46

Conclusions

We presented some of the most popular combinatorial

algorithms to solve the problem of finding common motifs in

DNA sequences

SMILE and MITRA-GRAPH are the most interesting

WINNOWER is not guaranteed to find a solution

PRUNER is incomplete

SMILE is unique in its approach to composite motifs

MITRA-GRAPH has the virtue of combining different contributions

of SMILE and WINNOWER to avoid unnecessary explorations of the

search space

Nuno D. Mendes, IST/UTL – p. 44/46

Conclusions

SMILE can still outperform MITRA-GRAPH for smaller motifs

Nuno D. Mendes, IST/UTL – p. 45/46

Conclusions

SMILE can still outperform MITRA-GRAPH for smaller motifs

The overhead of building the graphs is only worth for larger

values of l

Nuno D. Mendes, IST/UTL – p. 45/46

Conclusions

SMILE can still outperform MITRA-GRAPH for smaller motifs

The overhead of building the graphs is only worth for larger

values of l

Yet, SMILE is more sensitive to high degrees of degeneration

since all nodes of T down to level e must always be visited,

whereas MITRA-GRAPH can prune the mismatch tree earlier

Nuno D. Mendes, IST/UTL – p. 45/46

Conclusions

SMILE can still outperform MITRA-GRAPH for smaller motifs

The overhead of building the graphs is only worth for larger

values of l

Yet, SMILE is more sensitive to high degrees of degeneration

since all nodes of T down to level e must always be visited,

whereas MITRA-GRAPH can prune the mismatch tree earlier

However, it is difficult to compare the performance of different

motif finders without actual tests with real or synthetic data

Nuno D. Mendes, IST/UTL – p. 45/46

Conclusions

SMILE can still outperform MITRA-GRAPH for smaller motifs

The overhead of building the graphs is only worth for larger

values of l

Yet, SMILE is more sensitive to high degrees of degeneration

since all nodes of T down to level e must always be visited,

whereas MITRA-GRAPH can prune the mismatch tree earlier

However, it is difficult to compare the performance of different

motif finders without actual tests with real or synthetic data

Most implementations are not publicly available

Nuno D. Mendes, IST/UTL – p. 45/46

Thank you

Nuno D. Mendes, IST/UTL – p. 46/46

Thank you ,

Nuno D. Mendes, IST/UTL – p. 46/46

	Outline
	Some Biology
	Some Biology
	Some Biology

	Some Biology
	Some Biology

	Problem
	Problem
	Problem
	Problem

	Problem
	Problem
	Problem
	Problem

	Notation
	Notation
	Notation
	Notation
	Notation
	Notation

	winnower
	winnower
	winnower
	winnower
	winnower
	winnower

	winnower
	winnower
	winnower
	winnower

	winnower
	winnower
	winnower
	winnower

	winnower
	winnower

	winnower
	winnower
	winnower

	winnower
	winnower
	winnower
	winnower
	winnower
	winnower

	pruner
	pruner
	pruner
	pruner
	pruner

	pruner
	pruner

	pruner
	pruner
	pruner
	pruner
	pruner

	pruner
	pruner
	pruner

	pruner
	pruner

	pruner
	pruner
	pruner

	pruner
	pruner
	pruner
	pruner
	pruner

	pruner
	pruner
	pruner
	pruner
	pruner

	pruner
	pruner
	pruner
	pruner

	pruner
	pruner
	pruner
	pruner
	pruner
	pruner
	pruner
	pruner
	pruner

	pruner
	pruner
	pruner
	pruner
	pruner

	asmile
	asmile
	asmile
	asmile
	asmile

	asmile
	asmile
	asmile
	asmile

	asmile
	asmile

	asmile
	asmile
	asmile
	asmile
	asmile
	asmile
	asmile
	asmile
	asmile
	asmile
	asmile
	asmile
	asmile
	asmile
	asmile
	asmile
	asmile
	asmile
	asmile
	asmile
	asmile
	asmile

	asmile
	asmile
	asmile
	asmile
	asmile

	asmile
	asmile
	asmile
	asmile
	asmile
	asmile

	asmile
	asmile
	asmile
	asmile
	asmile

	mitra
	mitra
	mitra

	mitra
	mitra
	mitra

	mitra
	mitra
	mitra
	mitra
	mitra
	mitra

	mitra
	mitra
	mitra
	mitra

	mitra
	mitra
	mitra

	mitra
	mitra

	mitrag
	mitrag
	mitrag
	mitrag
	mitrag
	mitrag

	mitrag
	mitrag
	mitrag

	mitrag
	mitrag
	mitrag
	mitrag
	mitrag
	mitrag

	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Conclusions

	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Conclusions

